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to that of the experiment makes the system switch randomly between the attractc 
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ically chaotic regime. 
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that the boundary which separates the two coexisting basins of attraction is i 
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peak postion of the boundary dimension vs. dc current coincides with the peak 
position of noise density vs. dc current in the experiment. This agreement i: 
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ABSTRACT 

We have studied in detail the response of several Nb-aSi-Nb junctions to laser 

radiation at far-infrared frequencies, 245, 419, and 604 GHz. All these Nb-aSi-Nb 

junctions were made by the SNAP (Selective Niobium Anodization Process) procedure on 

a single wafer. They all have the plasma frequency i^={2€iJtiC)^'^l2n about 400 GHz. 

When we irradiate the junctions at 419 GHz, the radiation frequency is very close to the 

plasma resonance frequency. We saw very rich nonlinear dynamic effects exhibited in the 

dc I-V characteristics, such as, negative resistance regions, subharmonic steps, and noisy 

I-V curves which can not be explained by thermal or other noise sources. 

By using a RCSJ ( Resistively and Capacitively Shunted Junction ) model, 

modified to include a piecewise nonlinear resistance, with an appropriate amount of noise, 

we can reproduce the dc I-V curves of the irradiated junctions very accurately in both 

digital and analog simulations. The agreement between the simulations and the 

experimental results is excellent in those qualitative features on dc I-V curves such as the 

appearance of certain subharmonic steps and negative resistance regions. The agreement is 

very good in some of the quantitative comparisons such as the step width dependence on 

the laser power. 

The simulations showed that the reponse of the junctions to the laser radiation is 

extremely sensitive to the plasma resonance frequency f   when the laser frequency f^^f . 

Changing   f^/fp by 10%, say, from f^/fp = 0.97 to 1.07, the I-V curves of different 

irradiated junctions showed quite unmistakable differences. The one with f,/f = 1.07 
L    p 

showed the 2/3 subharmonic Josephson step and the other one with f, /f = 0.97 showed 

the 1/2 subharmonic Josephson step with a little bump at the edge. These very distinctive 

features on dc I-V curves can serve as Tmgerprints" for each junction. Since the parameter 

range of fp to see those fingerprints is very narrow, by scanning f   to reproduce the 



u 

experimental I-V curves in simulations, we can quite accurately determine the experimental 

fp value, which is the most important parameter in the nonlinear dynamics studies of 

Josephson junctions. 

Aided by simulations, we discovered that die noisy I-V curves are caused by 

various nonlinear dynamic effects. There are I-V curves irradiated at certain laser power 

levels which show intrinsic chaos, i.e. the system motion is random even in the absence of 

noise. The simulations showed that die chaotic state has been reached through either 

period-doubling bifurcation or intermittency or quasiperiodicity depending on die particular 

bias conditions on die I-V curve. On the odier hand, diere are quite a few noisy regions in 

die experimental I-V curves that do not show intrinsic chaos in die noise-free simulations, 

but instead show die coexistence of two or more attractors. Adding noise comparable to 

that of the experiment makes the system switch randomly between the attractors, thus 

producing noisy I-V curves which are indistinguishable from diose of intrinsically chaotic 

regime. 

In one of those noise-induced chaos regions, we found in digital simulations that 

the boundary which separates the two coexisting basins of attraction is a fractal, with 

dimension bigger than one. At certain dc bias current, the dimension can be quite close to 

two, which would mean diat die whole phase plane is occupied by basin boundaries. In 

these circumstances, any uncertainty in the initial conditions will cause tremendous 

uncertainty in die later motion of die system. In this case, the system will be extremely 

sensitive to noise. From the digital calculation of dimension of the fractal basin boundary, 

we found that the peak position of the boundary dimension vs. dc current coincides with 

the peak position of noise density vs. dc current in the experiment. This agreement is a 

strong evidence that the noise sensitivity is indeed related to the dimension of the basin 

boundaries. 
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CHAPTER   I 

INTRODUCTION 

Ever since Brian Josephson suggested in 1962 that two weakly-coupled 

superconductors might show some very distinctive nonlinear effects now named after 

him,*^ Josephson junction systems have been a research subject interesting to a broad range 

of scientists, from those who are interested in the universal nature of nonlinear dyamics 

and the fundamentals of quantum mechanics, to application-oriented scientists who are 

trying to build the fastest, most sensitive and precise instruments by using Josephson 

devices. 

The major attraction of the Josephson system is its simplicity and richness of 

nonlinear dynamics and quantum mechanical effects. Although the complete theory of 

Josephson tunneling is based on a very complicated microscopic many-body theory,^ for 

most purposes a Josephson junction can be very well characterized by the so-called RCS J 

model ( Resistively and Capacitively Shunted Junction). Its equation of motion turns out 

exacdy the same as a damped driven pendulum, except its characteristic frequency is about 

10^-10^^ times higher than that of a typical mechanical pendulum, which makes the 

Josephson junction a useful device for high frequency purposes. Also, its characteristic 

energy is typically in the order of thermal noise at several degrees temperature. This feature 

makes the Josephson device sensitive to some very weak signals that are comparable to 

thermal noise level, which is by far the most sensitive device at high frequency up to 

far-infrared region (~10^^ Hz). 

However simple the Josephson system is, it is a nonlinear system; thus it shares 

some universal behaviors with a large variety of other nonlinear systems. 

Feigenbaum^ first studied a pattern by which a nonlinear system might go into 



chaos: As one of the system parameters is changed towards a chaotic region from 

nonchaotic ones, the system shows a sequence of appearances of subharmonic frequencies 

1/2, 1/4, 1/8, ... of the original driving frequency. Eventually the l/2~ = 0 frequency 

comes out, and the motion of the system is no longer periodic even though it is a 

deterministic system driven at a single frequency. 

Manneville and Pomeau"^ have studied another route to chaos through 

intermittency: As one of the system parameters exceeds a critical value, the otherwise 

periodic motion becomes interupted by occasional random bursts. The bursts happen more 

and more often as the parameter approaches the chaotic region, and eventually the random 

bursts happen so often that the periodic feature of tiie motion is totally washed out. 

Besides these two most well known routes to chaos, other routes and the 

associated universal features have been studied also. One of those is the transition from 

quasiperiodic motion to a chaotic one in a system driven by two or more incommensurate 

frequencies.^ 

It was Huberman, Crutchfield and Packard^ who first applied those theories for 

general nonlinear systems to Josephson junction system. They computed a chaotic-periodic 

state diagram in the i^-ca^^^ plane. Since tiien, the study of chaos in Josephson systems 

has been one of the most active fields in physics. Many simulations have been made, very 

detailed and complicated state diagrams have been computed,^'^ ^ some of the universal 

constants and universal laws predicted for general nonlinear systems have been 

checked. 12-14 However, in spite of the rich publications in the quantitative simulation 

studies of universal chaotic behaviors in Josephson junctions, the experimental studies on 

a real Josephson junction have remained somewhat qualitative and descriptive. ^^'^^ The 

main reason is that the characteristic fequency of a Josephson junction is so high ( at least 

10 GHz ) that the direct observation of many predicted features of chaos, such as period 

doubling bifurcation to chaos, is impossible. All people can see in an experiment on a real 



Josephson junction is some time averaged quantities such as dc I-V curves and low 

frequency power spectrum. All the clues about chaos they can find in an experiment are 

some unusual I-V characteristics such as negative resistance or noisy Josephson steps and 

the associated exceptionally high level of low-frequency noise power density. To model 

the junction correctiy and find the right parameters for die junction to reproduce the I-V 

characteristics in a much slower simulation is a very crucial step to bridge the gap between 

the general knowledge we have about chaos and the data taken from a real Josephson 

junction. 

This report is focused on die experimental and the associated simulational work 

done on several Nb-aSi-Nb junctions made by the SNAP ( Selective Niobium Anodization 

Process ) procedure. These junctions have critical current densities of about 9000A/cm2. 

Togetiier with the dielectric properties of the amorphous Si barrier, this gives the plasma 

resonance frequency of die junction fp = {ltljR.C)^l^l2n about 400 GHz. The junctions 

are located at the center of a half wave dipole antenna which is broadly resonant about 400 

GHz. We have studied die responses of these junctions to laser radiation at three 

frequencies, 245, 419 and 604 GHz. At 604 GHz, which is 1.5 times the plasma 

frequency, we did not see any unusual behavior such as a noisy step or a negative 

resistance region, except the ac Josephson step width is somewhat smaller than expected. 

This absence of chaos is consistent witii die digitally calculated state diagrams, which 

show that the chaos direshold of ac drive amplitude diverges quite quickly when the 

driving frequency is increased above die plasma frequency. At 419 GHz and 245 GHz, 1 

and 0.6 times die plasma frequency respectively, die state diagram suggests we should be 

able to see chaotic phenomena at a modest driving amplitude even at zero dc current. And 

indeed, we saw some quite distinctive features on the dc I-V curves:   Noisy and 

meandering steps; negative resistance regions; subharmonic steps in the absence of an 

adjacent integer step; and exti-emely high levels of low frequency noise. None of these 



features above will be seen in a well-behaved Josephson junction, for example, a 

voltage-biased Josephson junction, which is very well characterized by the Bessel function 

dependence of the step width on driving amplitude. Also, all those features can not be 

explained solely by thennal or other kinds of random noise in the system, or by the 

fluctuations in die laser power. There must be something intrinsic behind those unusual 

behaviors. 

We did extensive digital and analog simulations to find out what happened in the 

real junctions. Both digital and analog simulations are based on a RCS J (Resistively and 

Capacitively Shunted Junction) model modified to include a piece-wise nonlinear resistance 

approximating die nonlinear quasiparticle I-V stiucture at the gap. First, we need to know 

all die parameters to reproduce the experimental result in die simulations, especially the 

plasma resonance frequency fp. The simulation results showed that the specific features on 

I-V curves are extremely sensitive to fp when fp is close to the drive frequency. But due to 

the uncertainty in the area of the junction and the parasitic capacitance, we can not 

determine die plasma frequency of the junction to within less than 20% by using the 

specific capacitance value times the apparent area. The simulations reveal that some 

qualitative feamres on dc I-V curves, such as the appearance of certain subharmonic steps, 

appear only for a very narrow range of plasma frequency, when die driving frequency is 

near it. For example, in changing die ratio f^/ fp by 10% fi-om fL / fp = 0.97 to 1.07, the 

I-V curve with fL/fp= 1.07 shows the 2/3 Josephson subharmonic step, which is the 

characteristic feature of one of the SNAP junctions, but the one with f, / f = 0.97 shows 

die 1/2 step, which is die feature of anodier junction. Since die 1/2 and 2/3 steps appear for 

such a narrow fp range (10%), diese specific features of the I-V curve can serve as a 

"fingerprint" of each junction to tell which parameter range it belongs to. By trying to 

reproduce those fingerprints in simulations, we can thus determine the parameter f, / f 

unambiguously to a few per cent. 



Although chaos is an intrinsic phenomena for a deterministic nonlinear system in 

the sense that, even in the absense of any random perturbation, the motion of the system 

can be very randomlike, in a real physical system we can never establish a noise free 

environment like most of the simulation studies have assumed. There is always thermal 

noise at finite temperature and shot noise at finite voltage plus other less intrinsic noise. 

The interplay of these noise sources and a highly nonlinear system is something that we 

must deal with. Including noise appropriately in the simulations by taking into account the 

difference in the averaging cycles between the experiment (10^^ cycles) and the simulations 

(10* cycles), we could reproduce the experimental I-V curves in the simulations in a very 

impressive way both in the qualitative features of I-V curves, such as the appearance of 

certain subharmonic steps, and the quantitative features, such as the dependence of the 

step width on the laser power. 

The simulation also revealed that the similarly noisy I-V curves can be caused by 

quite different reasons. For some noisy I-V curves, the noise free simulations showed that 

the phase motion of the system is intrinsically chaotic; adding some noise comparable or 

bigger than in the experimental case does not change the motion qualitatively. On the other 

hand, the noise free simulations for some other noisy I-V curves do not show chaotic 

motion; instead the system has more than one stable periodic solution, but which periodic 

motion the system will converge to depends very sensitively on the initial conditions. 

When we computed the basins of attraction (i.e. the region in the phase space from 

which the system will evolve into a specific attractor), the pattern is extremely complicated. 

The boundary between the basins is usually fractal, and the dimension of such boundary 

can be quite close to 2. This would mean that the whole phase space is occupied by basin 

boundary, so that any uncertainty in the initial conditions, no matter how small, can cause 

the system to evolve to a different attractor. Apparently, this high dimension of the basin 

boundary corresponds to a high sensitivity of the system to noise. This hypothesis has 



been supported by the fact that the peak of the dimension of the fractal basin boundary 

coincides with the peak of the noise density measured in the experiment vs. dc bias 

current. 

This report is organized into six chapters. Following this brief introductory 

chapter, Chapter 11 will lay out the theoretical framework for the analysis of later chapters. 

Chapter HI is devoted to the experimental aspect of this research work, including sample 

preparation, laser set up and coupling antennas, and low noise measurement. Chapter IV 

will describe in detail the analog simulator we have been using, its principle of operation 

and performance. In Chapter V, we will discuss the analysis of the experimental data and 

comparison with the simulation results. The major conclusions will be summarized in 

Chapter VI, as will proposals of future investigation in this field. 



CHAPTER n 

THEORY 

2.1        Introducrion 

Although the complete theory about Josephson tunneling is based on a very 

complicated microscopic theory derived by Werthamer^ in 1966, for a lot of purposes, a 

Josephson junction is very well characterized by the so called RCSJ ( Resistively and 

Capacitively Shunted Junction ) model. This model has a very clear physical picture: the 

electrical conduction of a Josephson junction takes place through three separate channels: 

1.      The Josephson phase-dependent current channel which is due to dissipationless 

Cooper pair tunneUng; 

2. The quasiparticle tunneling channel which always exists at finite temperature; 

3. The capacitive channel which is inevitable due to the sandwich geometry of 

Josephson junctions. 

The equation of motion of the RSCJ model is a second order nonlinear differential 

equation which is considerably easier to handle than Wenhamer's microscopic theory, 

although the RCSJ equation is itself not solvable analytically. Also, the RCSJ equation is 

exactly the same in mathematical form as that of a damped driven pendulum. This 

mechanical analogy is extremely helpful in understanding the motion of a Josephson 

system. It makes insightful physical intuition instead of complicated mathematical 

computation play the important role. 

Just like most of the physicists working in superconductivity today prefer to use 

Ginzburg-Landau theory, which is a phenomenological mean-field version of BCS theory 

valid in a special case (T~T^), the author prefers to stay with the RCSJ model wherever it 

is applicable. Thus this theory chapter will be mostly devoted to the RCSJ model. But we 



have to keep in mind the limits of the model, such as heating and the high frequency limit. 

Heating effects occur in a junction when the Ohmic heat produced by quasiparticle current 

raises the local temperature above the ambient temperature, thus depressing the 

superconductivity of the junction.^l This can cause serious deviations from the RCSJ 

model, in which the critical current I^ is assumed to be a constant independent of bias 

condition. But due to the high resistance nature of a tunnel junction, the heating effect is 

much less significant than in a metallic microbridge. At high frequencies, when the 

frequency concerned is above the gap, pair breaking starts happening, the critical current 

is no longer a constant, and we should expect a large deviation between the behaviors of a 

real Josephson junction and the RCSJ model^. For a tunnel junction made of Nb, the gap 

frequency is above ITHz, so below that frequency, we can safely apply the RCSJ model. 

Besides these classical limitations on the RCSJ model, when the characteristic energy hca 

associated with the plasma oscillation exceeds the thermal energy kgT, we have to treat 

the mechanical particle governed by the RCSJ equation in a quantum mechanical way, that 

is, replace the Newtonian equation by the Schrodinger equation. A quantum mechanical 

effect called "macroscopic quantum tunneling" will dominate the thermally activated escape 

of the mechanical particle. This effect arises from the statistical nature of quantum 

mechanics and has no analogies to a classical mechanical particle^^'^^. Fortunately or 

unfortunately, for the samples studied in this report, none of the above effects is so 

dominant that a serious deviation from the RCSJ model occurs. 

2.2       The RCSJ model 

The model of a Josephson junction is illustrated in Fig. 2.1: 



R X ac 

Fig. 2.1 

Circuit of the RCS J model. 

If we write down the current-voltage relation of this model, apparentiy we will get 

dV 
C-— + I_(V) +1 sin <)) = I. +1 (t) +1 (t) 

If we introduce the Josephson phase-voltage relation 

d(t) _ 2eV 
dT'^K" 

(2.1) 

(2.2) 

we should be able in principle to solve the voltage for given current or vice versa. The 

voltage dependence of the quasiparticle current is usually a nonlinear form, but for the time 

being, we will neglect the nonlinearity in Iqp(V), and assume I =V/R. That will not affect 

our discussion qualitatively as long as we are not considering photon-assisted-tunneling 

(PAT).26,2 /^isQ ^g ^ji2 \tzst out the noise term \^\) undl section 2.4. 

We are going to discuss separately the different ways a Josephson junction can be 

biased experimentally. 

i) Junction is both dc and ac voltage biased. 
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In this case we can write 

^ = Vdc + \cCos(C0Lt) (2.3) 

^^^^Tdc ^'^d '^ac(^) ^^^ externally controllable variables, and   ©L  is the laser drive 

frequency. I^^ and I^(t) are to be determined. Plug (2.3) into (2.2) and then into (2.1), 

and we get: 

^dV    V    ,   . 
C— + - +1^ sin [ coj + 2a sin (co^^t) ^<^J=l^ + ijt) (2.4) 

2eV. eV 

In an experiment, we can only measure time-averaged quantities, so we take the time 

average of equation (2.4), and get: 

'- + l>,(-l)"j_(2a)sin((J) )5 

Equation (2.5) implies that the irradiated I-V curves will have a set of infinitesimal 

thin spikes superposed on an otherwise linear curve as shown in Fig. 2.2, the positions of 

those spikes are at V„ = nCncoL/2e)    ( n=0, ±1, ±2,...), and the height of each spike is 

given by 

AI, = 2J„(2a) I, (2.6) 

(since sin^Q can be varied from -1 to +1). 

It is impossible to see something infinitesimal in experiments. Besides, the 

impedance of a Josephson junction is usually quite low, compared to the source and dc 

leads impedance, especially at the steps, where the dynamic resistance is zero; so the dc 

voltage-bias is not a quite realistic case. 

'd.=X"'c2(-l)"V«)-n(t)5,,„^ (") 
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Fig. 2.2 

Scheamtic I-V curve of an ac and dc voltage-biased Josephson junction. 

ii) Junction is dc current biased but ac voltage biased. 

This means that I^^ and V^ are externally controllable parameters; V^^ and I^(t) 

remain to be found. Write 

V = V,^ + V^COS(C0Lt) 

plug the second equation into equation (2.2), and we get, as before, 

(l)(t) = co^t + 2a sin ((n^t) + (t)^ 

Putting this into equation (2.1), we have 

d(V^^cosco^^t)    V,^+V,^cosco,t 

dt 
.+ dc        ac L 

— + 1^ sin [ co^t + 2a sin (cOj^^t) + (j) ] 

dc       ac^ ^ (2.7) 

This equation is the same in form as the equation (2.4) except now it is I^^ instead 

°^ ^dc ^hat is the controllable variable. Taking the time average of equation (2.7), we have 
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^dc = R[ Idc - Ic E^(-l)" K (2a) sin ((Dj 5^^^^^] 

From the phase-locking argument given later in this section, in the region 

(2.8) 

V.   = n—± 
<^'' 2e 

n = 0,±l,±2, ... 

^-Vn(2«)<Id.<-^ + IA(2a) 

the initial phase (t)^ will vary in such a way to keep V^^ constant, forming a zero dynamic 

resistance step; outside these regions the V^-1^ curve will approach the original ohmic 

line as the operating point considered moves away from the step region. Thus the V^-1^^ 

curve in this case will look like the one in Fig. 2.3. The step width of the nth step is given 

by 

AI„ = 2IJ„(2a) (2.9) 

Fig. 2.3 

Schematic I-V curve of an ac voltage-biased, but dc current-biased Josephson junction. 
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This well-known result has been verified in many junctions at different 

frequencies^''•^^. One thing to point out is that in both cases i) and ii), as long as the time 

dependent voltage has only a single frequency component, i. e. 

V^^(t) = V^ cos (co^t) 

then we can only get integer Josephson steps, regardless of whether we can control the dc 

voltage or not. 

iii)        Junction is both dc and ac current biased. 

In this case, the controllable variables are: 

and we must solve to fmd: 

I = I, +1   cos CO, t dc       ac L 

v = v,, + vjt) 

Even though this case is only one step further, it is a qualitative change. Because 

now we do not know the time evolution form of ^(t) a priori, we can not use the method 

of cases i) and ii). We have to deal with a second-order nonlinear differential equation; it 

is not analytically solvable in general. However, in three special cases, the case iii) will 

reduce to case ii): 

1. co^^L»R 

2. 0),L»^— (2.10) 
^ co^C 

3. I     » I ac c 

(Here L = 1i/2el^ is the minimum of the nonlinear Josephson inductance.) The first two 

conditions mean that the impedance of one of the linear elements (R or C) is much lower 

than that of the Josephson inductance, so that most of the ac current will flow through the 

iine^ element with the lowest impedance. Condition 3 means that the ac current amplitude 

is much bigger than the critical current, which is the maximum current the Josephson 
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element allows to flow, so that again most of the ac current has to flow through the other 

two linear channels. In any of these three cases, most of the ac current will flow through 

the linear element with the lowest impedance, and the nonlinear Josephson element is 

effectively ac voltage-biased by the voltage across this internal linear element, whatever 

the external source impedance may be. 

If none of the conditions (2.10) is satisfied, we have to deal with a nonlinear 

equation. Combining equations (2.1) and (2.2), we get: 

RC d^(|)      -R   d(l) 
2FTT+2iRdr'"^oSin<^ = Idc + IacCOSC0^t (2.11) 

dt 

Introducing the dimensionless parameters: 

X   =    CO t 
p 

dc dc   c 

iac = Iac/Ic 

we reduce equation (2.11) to a dimensionless equation: 

d\       1    dA «. 

t^c p 

Four parameters (ojoi^, P^, i^^ and i^^ totally determine the outcome of equation 

(2.12). This equation resembles the equation of motion of a driven damped pendulum, or, 

in a purely dc-biased case, a ball moving in a tilted "washboard" potential. Which 

mechanical analogy is more useful depends on the situation. When we deal with 

phase-locking problems, the driven pendulum is a more helpful picture, as it is easier to 

visualize a pendulum rotating commensurately with a driving torque. When we deal with 

switching phenomena, in which the junction switches from the zero voltage state to the 
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nonzero voltage state or the other way around, the tilted washboard potential is definitely 

a better picture. 

With the help of the mechanical analogies, even without being able to solve 

equation (2.12) analytically, we can still predict qualitatively what might happen: 

For a mechanical pendulum, if the rotation of the pendulum is commensurate with 

the driving frequency, i.e. if the pendulum rotates m turns for n cycles of driving force, 

this motion is apparently more stable against perturbations than incommensurate motion. 

This is the so-called phase-locking motion, a phenomena first observed by the Dutch 

physicist Huygens in the 17th century, when he noticed that two closely located 

pendulums tend to synchronize their oscillations. In terms of I-V characteristic, this means 

at certain voltage values (V «= d<{)/dt) 

Vn.m = i^'^(^C0L/2e) n = 0,1,2,... 

m=l,2,... (2.13) 

the voltage tends to stay at that value even though the current is changed away from 

^n,m/^' ^hus forming a constant voltage step, resembling those described in case ii), but 

with the difference: 

1) Now we have not only integer steps ( m=l) but also subharmonic steps ( m>l ), 

which will never appear in cases i) and ii). 

2) The width of each step is no longer an analytical function of the driving power. 

Experimentally, this means that it is much more difficult to deduce i   from the dc I-V 
3C 

curves of the irradiated junction. 

2.3       Chaos in a Josephson junction 

2.3.1     Routes to chaos 

Most of the literature in the chaos field is addressed to the problem of how a 

nonlinear system goes into chaos near the chaotic-nonchaotic boundary. This phenomenon 
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is very much like the critical phenomena associated with a phase transition in other fields of 

condensed matter physics. By applying the powerful scaling theory to discrete return 

maps, people discovered some universal behaviors similar to critical exponents in critical 

phenomena for several routes to chaos. The following are the three most studied scenarios 

a nonlinear system might follow in going into chaos. 

A.      The Feigenbaum scenario:   Period doubling bifurcation to chaos. 

Feigenbaum-^ discovered a pattern by which a nonlinear system might go into 

chaos from the study of a quadratic return map 

'^n+i = bx„(l-xj 

and claimed the result holds for a large variety of nonlinear systems. Its implication to a 

driven nonlinear system can be specified as follows: In a certain parameter range of a 

nonlinear system, as one parameter r approaches tiie chaotic-nonchaotic boundary from 

the nonchaotic region, the period takes on the sequential values 

T = 2'^T^,^ k = 0,l,2.... 

where T^.^^ is the period of the driving force. The ratio between successive intervals 

-^k-i/^k (where Ar^=vrj^^) approaches a universal constant 5 = 4.6692... as k goes to 

infinity, i.e. 

lim    ^\., 

^\ 

= 5 = 4.6692... (2.14) 

This implies that the series of parameter ranges corresponding to successive periods forms 

a geometric series in the limit of large k; also die series is convergent so that the system 

will reach chaos at finite r. 
1 'y 

Kautz^^ has checked the universality of (2.14) in a digital simulation of the RCSJ 

model. He chose i^^ as the varying parameter. Table 2.1 shows how good the agreement is 

between the simulation and the theoretical prediction. 
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Table 2.1 

k Jk ^Jk=Jk-Jk-i ^Jk-i/AJk 

1 1.84834330 

2 1.87077911 0.02243581 • • • 

3 1.87584258 0.00506347 4.431 

4 1.87697352 0.00113094 4.477 

5 1.87721813 0.00024461 4.623 

6 1.87727067 0.00005254 4.656 

7 1.87728192 0.00001125 4.670 

Table 2.1. Location and spacing of the bifurcation points for the period-doubling 

cascade at the lower end of the 10th step, jj^ is the dc bias at which the period 

changes from 2'^'^ to 2^ (After Ref. 11) 

B.       The Pomeau-Manneville scenario:  Transition to chaos through intermittency. 

Pomeau and Manneville'* discovered this route to chaos through study of the 

Lorenz equation system in fluid dynamics, which is 

dx dy dz . 
— = a(y-z);      _ = -xz + rx-y;      -^ = xy - bz, 

where x, y, z are some time-dependent variables which describe the state of the Lorenz 

system, and G,r,b are parameters of the system independent of time. They found out that 

as the parameter r surpasses the critical value r^, the otherwise "laminar" phase is 

interrupted by random "turbulent" bursts. The duration of the "laminar" phase becomes 

shorter and shorter as r gets bigger. The average duration of "laminar" phase N near the 

critical point r^ diverges as r approaches r 

N -   ( r - r, ) ,-1/2 (2.15) 

This has been seen in an electronic Josephson junction simulator by Yeh and 
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Kao.^^ In their simulations, they chose the ac current amplitude i^^ as the varying 

parameter, and they measured the average periods N of the periodic state (corresponding to 

the laminar phase in the Lorenz system). Fig.2.4 shows the fit of the data to the N'^ vs. 

(^ac ■ ^ac") ^^"^- Fluctuations in N are due to the random nature of the process including the 

intrinsic noise in the Josephson simulator and extemal noise in the current source. 

C.        The quasiperiodicitv scenario:    Transition from quasiperiodicity to chaos . 

Several groups^ have studied the 1-dimensional return map 

K 
e   . =Q+Q- — sinlTce 

n+l        "271" 

which is the discrete map isomorphic to the continous RCSJ equation. In this circle map, 

K characterizes the nonlinear coupling strength, while ^2 is a bias term analogous to the dc 

bias current i^ in the RCSJ equation. The winding number W is defined as: 

e ., -e. 
W = Urn n+1 1 

n-^      n 

which is the average phase velocity analogous to the dc voltage in the RCSJ model. There 

are three possible solutions for W: 

(1) W=q/p, where both q   and p    are prime numbers. This corresponds to a 

phase-locked solution. 

(2) W is an irrational number. This corresponds to a quasiperiodic solution. 

(3) W is not a well-defined number. This corresponds to a chaotic solution. 

At K<1, the W-Q plot is a combination of phase-locked steps and quasiperiodic 

parts; there are no overlapped steps and chaotic solutions. 

At K>1, there are overlapped steps in the W-Q plot, and there are chaotic 

solutions for certain values of Q. 

At the critical point K=l, the W-^ plot is composed purely of nonoverlapped 
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(xlO"^) 

Fig. 2.4 

The inverse square of the average periods N of the periodic state vs. the ac current 

amplitude measured from the critical point I^^,*^ [(I -1^,) in the figure] in an analog 

simulation. (After Ref. 13) • 
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phase-locked steps, forming a complete devil's staircase, with the dimension of the fractal 

structure D=0.87. 

Two groups^^'^"* have checked this prediction with an electronic Josephson 

simulator. They did find at certain critical values of certain parameters, the local V^^-1^^, 

curve indeed showed a complete devil's staircase, i.e. part of the V^^-1^^, curve is totally 

composed of non-overlapping subharmonic steps. Their measurements of D, 0.91±0.04 

in ref. 13, and 0.87±0.02 in ref. 14, are in a quite good agreement with the prediction. 

2.3.2    Chaotic regions in a Josephson junction. 

Although all the scenarios described above are extremely important to study the 

universal behavior of how a Josephson junction and other nonlinaear dynamic systems go 

into chaos, practically, it is very difficult to observe all these phenomena in a real 

Josephson junction due to the high frequency nature of Josephson junctions. Besides, the 

unavoidable noise, thermal or nonthermal, will wash out all the fine structures, making it 

impossible to see a complete devil's staircase and to check those universality constants 

such as D. In an experiment on a real Josephson junction, we are more interested in 

finding out under what circumstances chaotic phenomena might appear. 

It was Huberman, Crutchfield and Packard^ who first studied chaos exhibited by 

an ac-driven Josephson junction, offering a possible explanation for the unusually high 

level of noise in a Josephson parametric amplifier. In that first paper, the authors also 

computed a chaotic-nonchaotic state diagram in the i^ - f^/f plane. Although the sketch 

is quite rough, so the chaotic-nonchaotic boundary appears to be a smooth curve, this was 

later found out to be incorrect, because the boundary has in general a fractal structure if we 

study the state diagram in a finer grid. Still, it provided guidance for further studies. 

Pedersen and Davidson^ digitally integrated the RCSJ equation for the zero dc bias case. 

Their chaotic-nonchaotic state diagram is shown in Fig. 2.5a, in which the RCSJ equation 
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was numerically integrated with McCumber parameter [3^, = 25. Clearly, the 

chaotic-nonchaotic boundary is much more complicated than just a simple smooth curve; 

also, the chaotic regions are separated by windows of periodic motion. The window index 

(p, q ) indicates the p th subharmonic on the <7 th rf induced step. One interesting point in 

this state diagram is that the minimum drive amplitude i^^ for chaos takes place at f^/f = 

0.67 = 2/3 instead of at the plasma resonance frequency itself. The explanation lies in the 

fact that large drive ampUtudes drive the Josephson junction into a nonlinear region, where 

the potential is softer than that of a harmonic oscillator, so the actual resonant frequency is 

lower than the plasma frequency, which is the natural oscillation frequency of the system 

when it is near the bottom of the potential well. 

D'Humieres et al.^ did an extensive study of the chaos-nonchaos state diagram on 

an analog simulator. Their bias conditions, i^^ = 0, (3^ = 16, are very similar to those of 

Pedersen and Davidson, and their state diagram (Fig. 2.5b) comes out quite similar to Fig. 

2.5a. Again, the minimum drive ampUtude i^^ for seeing chaos occurs at lower than the 

plasma frequency, at  f^/fp = 0.6  in their diagram. Their larger f^/f    range showed 

interesting phenomena at both high and low frequency ends. At the high frequency end, 

f^/fp^l. the chaos threshold goes up quite quickly, up from 1^^ = 0.5 at f^/f =0.6 to 

i^ = 1.8 at f^/fp = 1. In fact, our own analog simulation shows that the chaos threshold 

iac diverges very quickly when the driving frequency is above the plasma frequency; the 

minimum   i^^  for seeing chaos is bigger than 5 when  f^^l.Sf    (cf. Fig. 4.7). The 

argument given later in this section will predict that when fL » f , chaos is very unlikely 

to happen.  At the low frequency end, the chaos threshold seems flat at i   =1.0. The 
EC 

onset of this flat curve takes place at ijf^ = 0.25 = Q-^ = (3^-1/2 (ref. 9). This seems to be 

true in general from our own studies of the state diagram (cf. Fig. 4.7) for the 

underdampedcase(p^>l). A possible explanation is that when i^<{\fKC) (equivalent 

^° V^p "^ Pc'^^)' *h^ system is in an adiabatic regime so that its responses are frequency 
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<C0.8- 

Fig. 2.5(a) State diagram in the i^ - fjf^ plane (Pi=i^, n=fjf^ in the figure), (3^=25, 

id^=0. Cross-hatched region: chaos. Hatched region: complicated periodic solmions. 
Indexing (p, q) corresponds to the pth subharmonic on the qth step. (After Ref. 7) 

1.00 

NORMALIZED FREQUENCY w^n/Hn 

Fig. 2.5(b) State diagram in the i^^\li^ plane (7^=1^^, co=fL/fp in the figure).  p^=16, 
id^=0. (After Ref 9) 
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independent. 

The effect of damping on the chaotic-nonchaotic state diagram can be appreciated 

from the state diagram computed by Cirillo and Pedersen^ shown in Fig. 2.6a, where the 

curves are the chaos threshold plotted in a coarse scale. Again, the computarion is done 

with zero dc bias, and P^ is the parameter whose numerical value appeared on each curve. 

We can see from Fig. 2.6a that as the damping increases ( (3^ decreases ), the driving 

frequency corresponding to the minimum of the chaos threshold shifts towards lower 

frequency. This can be easily understood as damping tends to slow down the motion of the 

system. For a harmonic oscillator, damping decreases the resonance frequency by a factor 

of [ 1 - 1/(4(3^) ]i/2 Besides shifting the threshold curve to lower frequency, damping 

also increases the chaos threshold. From Fig. 2.6a, we can see for [3 = 1.5, the 

minimum i^^ for seeing chaos is akeady bigger than 1. Later discussion will show that 

chaos will not occur in a very overdamped regime. In a very underdamped regime, 

P(,»l, damping seems to have no effect on the chaotic threshold. Two threshold curves 

computed with p^ = 25 and p^ = 175, respectively, coincide; the curve with p^ =17 is 

not too much different from the one with p^ = 25 either. This result is not surprising at all 

since for a harmonic oscillator, when p^ > 10, there is virtually no effect of damping on 

the natural oscillation frequency ((1 - l/4p )^l^ ~ 1). 

Octavio^O computed the state diagram in the i^^ - p^ plane in a very fine scale. 

Fig.2.6b shows the result computed with f^/fp = 0.65. The chaotic-nonchaotic boundary 

for the lowest value of i^^ is consistent with what we inferred from Fig. 2.6a: the chaos 

threshold flattens out at p^ > 20, and diverges quite sharply when P^ approaches zero. 

Again, like the state diagram of fine-grid in Fig. 2.5, the state diagram of fine-grid in 

^ac^Pc ^^so showed a complicated structure, the chaotic regions are interupted by windows 

of periodic solutions as we move along either on i    or P . 

For the four parameters in the RCSJ model ( f^/fp, p^, i^^ and i^ ), so far to our 
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Fig. 2.6(a) Threshold curves for transition to chaos in the i, -f, /f plane (D,=i  , Q=f, If ac    u   p ^ ^r i     ac' L   p 
in the figure) and p is the parameter. (After Ref. 8) 

Fig. 2.6(b) State diagram in the i^-^^ plane (p=i^ in the figure) with fL/fp=0.65. Empty 
regions correspond to period-one solutions. Solid regions correspond to period doubling, 
tripling and quintupling, as indicated in the figure. The hatched regions indicate chaotic 

solutions. (After Ref. 10) 
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knowledge, there is no convincing chaotic-nonchaotic state diagrams made with i^^ as one 

of the dimensions. The main reason is that, from our own experience of studying the state 

diagram in the i^ - i, plane in the analog simulations, unlike the i,^ - f, /f   and i   - B 
aC LJ     P 3,C        ~ C 

state diagrams, in which the state at a particular point is single valued ( chaotic or 

non-chaotic ), the state in the i^c-idc P^^^® ^^ ^^^ hysteretic; it can be chaotic or periodic 

with different periods depending on the direction in which we sweep i^^ and i . It 

would be very difficult to construct a several layered state diagram in i^^ taking the 

hysteresis into account. But qualitatively, we know that a small dc bias i^ can cause the 

following effects: 

1) External symmetry breaking is introduced; the effective potential is no longer 

symmetric for <}) ^ -<(> transformation; 2) the resonant frequency is lowered because the 

curvature at the bottom of the potential well is reduced by i^; 3) the quality factor is 

decreased since Q = cOj^RC; 4) the critical ac drive required to produce rotation is 

reduced. Some of the four effects will lower the chaos threshold in certain conditions, but 

some will raise the threshold in otiier conditions. It cannot be said in general that the dc 

bias will definitely make chaos more likely to happen or tiie other way around. But 

qualitatively, a small dc bias (ijc < 1 ) does not change the results in Fig. 2.5 and Fig. 

2.6 dramatically. Thus we can still use tiiese results for guidance in the studies of both ac 

and dc driven junctions. However, later discussion in this section will show that chaos will 

not occur for a very large dc bias current. 

The attempts of making quantitative predictions on the chaos-nonchaos boundaries 

in Fig. 2.5 and Fig. 2.6 have not been very successful. In spite of the efforts^^'^'* many 

people attempted to derive a quantitative boundary in parameter space within which chaos 

might occur, at best they can only get some lower limit of such a boundary. So far we only 

know qualitatively in what parameter range we might see chaos. The following discussion 

is based on the heuristic argument of Kautz and Monaco^'^ on a model in which chaos is 
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caused by the interference of two incommensurate frequencies. In their model, a driven 

Josephson junction is characterized by a drive-dependent resonant frequency ^ ; Q is 

the generalized plasma frequency defined as follows. If (J)^, is a solution of the RCSJ 

equation (2.12), consider a perturbed solution ^(t) = <{)„(t) + e(t), where e(t) is assumed 

to be infinitesimal. Substitution of the perturbed solution into Eq.(2.12) and linearization 

in e yields 

d^e        1   de 

Solution of this linear equation in e can be vmtten as 

e(x) = P(T)e^^ (2.17) 

There are usually two solutions a^ for a, where a^ are the solutions with different sets 

of initial conditions: 

d£ (0) 
■    e (0)- = 1 -^— = 0 

+ dT 

de (0) 
e (0) = 0 -^— = 1 

dx 

The Qj. are in general complex numbers; their real parts determine the local stability of the 

solution and are known as the Liapunov exponents. 

A.^ = Rela^l (2.18) 

Positive X corresponds to an unstable solution, whose motion will diverge from the 

unperturbed solution exponentially in time under an infinitesimal perturbation. Not 

surprisingly, these exponents relate to the damping factor (3^ in a very simple way: 

\ + ^_ = -— (2.19) 
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When the response of the system to infinitesimal perturbations is oscillatory, the exponent 

a has an imaginary part which is related to the frequency of the oscillation. These 

oscillations are a generalization of the plasma oscillations which exist in the absence of ac 

bias. We thus define: 

Qp = I Im ( a^) I (2.20) 

Qp is the natural response frequency (normalized to co ) when we bring the system 

from its unperturbed orbit infmitesimally. Clearly, it reduces to the resonant frequency 

^9r^^^^-''^d<^^^''^ ^" ^he absence of ac bias; in that case the unperturbed orbit is the 

equilibrium position in phase space. In general, Qp is a function of the bias conditions. 

It has been known for a long time that chaos usually occurs at the bias conditions 

where the solutions are unstable^^^'^^ j g   ^ > Q. The significance of Q   is appreciated 

only recendy through Kautz's recent work.32 pig. 2.7 shows a striking coincidence of the 

period doubling point and  Qp = C0L/2c0p  solution. The two plots (b) and (c) are the 

maximum Liapunov exponent X and Q.^ vs. a = {(n^u)^'^. We can see at the cridcal 

value a^, = 0.28, the period of RCSJ solution is doubled (i.e., the inidal phase in the plot 

(a) is doubly valued).   Correspondingly,   Q.^   takes a value at exactlv half of the 

normalized drive frequency  (iijai^.  Meanwhile, the maximum of Liapunov exponent 

vanishes, implying that the original period 1 solution is unstable. This striking coindidence 

of X = 0,  Qp = a)L/2cOp,   and period doubling has been observed under other bias 

condidons^^^ and the coincidence of higher orders of period doubling bifurcation is 

observed. 

What this coincidence suggests is that a Josephson junction can be viewed as a 

dynamic system whose response frequency is Qp and damping is X, where the response 

frequency and damping are in the dynamic sense, as opposed to the equilibrium case in a 
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Fig. 2.7 (a) The initial phases of the m=l (period-one) and m=2 (period-two) solutions 

on the n=l step. Solid and dotted lines indicate stable and unstable solutions respectively, 

(b) Maximum Liapunov exponent for the stable m=l and m=2 solutions, (c) Generalized 

plasma frequency normalized to the drive frequency [ «p/i2i=Qp(fp/fL) in the figure] for 

the stable m=l and m=2 solutions, with a solid line indicating the result of numerical 

calculation and dotted and dashed lines indicating analytical results from approximate 

formulas. The horizontal axis is a=(yfO^. Note the coincidence of the period doubling of 

()) ((t)(0) is doubly valued), vanishing of X, and n={^/(2n at the same value of a. (After 
Ref32) 
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non-driven junction, where cOp and P^ are the parameters. Chaos and period-doubling 

bifurcations are the consquences of the interference of the driving frequency and  Q 

under zero damping condition   ( X, = 0 ). Thus to make chaos happen, the driving 

frequency must not be too far from Q . 

Kautz^^ derived an approximate expression for the maximum   Q    on a 

phase-locked step, which is 

max(Qp) = (Aiji/2 (2.21) 

where Ai   is the width of the step concerned normalized to 21 , and Q   is normalized to c p 

COp. Apparently, the maximum value of    Qp   is one, meaning the maximum of the 

generalized plasma resonant frequency is co . 

The assumption that chaos and period doubling phenomena are the consequences 

of the interference of the drive frequency and the natural response frequency Q of the 

system is a plausible picture. It is supported by the evidence that period doubling and X==0 

and Qp = C0L/2C0P tend to associate with each other. Based on this picture, Kautz and 

Monaco^l studied the parameter ranges of 0)L/cOp, (3^, i^^ and i^. They claimed that chaos 

will not occur at those regions where the interference of the drive and Q is minimum or 

the dynamic system is heavily damped. They predicted the non-chaotic parameters ranges 

as following: 

(1) |3,«1 

(2) iac«l 

(3) WL»% 

(4) Pac»(V^)^ ^^-^^^ 

(5) ide»Pac(0)LL/R) 

(6) Pac » (C0LL/R)2 

where 

Pac = iac(R/"LL)[l+(C0RC)2]-l/2 
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The first three relations are quite straight forward: (1) In the overdamped regime, 

there is no natural oscillatory motion; the system can do nothing but follow the driving 

force. (2) When the driving amplitude i^^ is too small, the system remains in a linear 

regime (\^l «7c/2); apparently, chaos will not happen in this case. (3) When the driving 

frequency is far above the plasma frequency, the impedance of the capacitance is much 

smaller than that of the Josephson inductance, so the junction is effectively voltage biased; 

chaos will not happen in this case either. In Kautz's model, he argued that when (o^/o) is 

far away from the region (0, 1), none of the natural frequency modes can be excited by the 

driving force (since 0 < Qp < 1), thus chaos will not occur. In fact, several groups^^'^"^ 

derived a theoretical prediction of (1), (2) and (3) by using the Melnikov-function 

technique, which assumes that chaos occurs at the bias conditions that the stable orbit 

intersects the unstable one. Their prediction of the threshold i "^ of chaos as a function of 
3.C 

coL/cOp, P^, and i^^ is 

T I 4 I ^1 
^ac > ' I W ' — K'"^ I cosh (f-L) (2.23) 

7C ^ CO 
p 

for I i^ I < (4/71) p^-i/2 

Eq. (2.23) indicates that the chaos threshold i^^"^ diverges both at (3 « 1, 

(condition (1) in (2.23)); and 0)^ » cOp (condition (3) in (2.23)). The comparison^'^ 

between this prediction and the digitally calculated state diagram is shown in Fig. 2.8. The 

dots are the digitally computed chaos threshold with the same bias conditions as those in 

Fig. 2.5a, which is ij^=0, ^^=25. The solid curve is the result from (2.23) with the same 

^dc ^"^ Pc values. The apparent lower value given by the theory is due to the coexistence 

of a stable periodic solution, even though there exists a non-stable chaotic solution- until i 
ac 

is above the digitally calculated curve, the system will stay at the stable periodic motion. 

(4) and (5) are not as apparent as (1), (2), and (3). They are due to the depression 

of the resonance frequency Qp at a finite voltage step. As stated in (2.21), the maximum 
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Fig. 2.8 

Threshold of transition to chaos in the igc-'^L'^^p plane, with \^=0, Pc=25. Solid 

curve is the result calculated from Eq. (2.23). The dots are the results from numerical 

simulation. (After Ref. 34) 
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resonance frequency on a step max(Qp) scale as (Ai^j^p)^^ (which is always less than 1 on 

a finite voltage step), which is a function of i^ and i^^. From the argument given above, 

we know that chaos can only occur when the normalized driving frequency co,/co is 

roughly in the range (0, max(Qp)). Because of this depression of Q at a finite voltage 

step, chaos will not occur for a given driving frequency if either (4) or (5) is satisfied. 

(6) comes from the fact that chaos usually occurs when there are overlapping 

steps, (cf 2.3.1(C), in the transition from quasiperiodicity to chaos, chaos does not occur 

until the bias conditions are reached, at which there are overlapping steps.) At very high ac 

amplitude, all the steps are so small that none of them are overlapping, thus chaos will not 

occur in this case. 

So far, all the published digitally calculated state diagrams^ ^^ are consistent with 

the conditions (2.22), so we can use (2.22) to guide the search for chaos in a Josephson 

junction or the design of a non-chaotic practical device. 

2.4        Effect of noise on a Josephson junction 

Most of tile simulation studies done on chaos are focused on the noise-free case. 

People are interested in tiie chaotic output of a purely deterministic nonlinear system with a 

clean sinusoidal signal input. But in the study of a real Josephson junction, we can not 

afford ignoring the inevitable fluctuations at finite temperature and finite voltage. In some 

highly nonlinear regions, where the system is extremely sensitive to penurbations, the 

noise equivalent to thermal noise of several degrees temperature can trigger some chaotic 

motions which are experimentally indistinguishable from intrinsically chaotic ones. Thus in 

a real experiment, we are always dealing with the interplay of noise and a nonlinear 

system. In the following argument, we will estimate how strongly the noise affects the 

Josephson system. 

In thermal equilibrium, each degree of freedom has a (l/2)kgT energy. If we apply 
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this to the RCSJ model (2.1), we can find the root-mean-square of the distribution of the 

phase: 

^™=M(^)f=[^]'" (2.24) 
c Y 

If we use standard theoretical relations^^ to relate I^ to the normal-state resistance 

of the junction R^ and the superconducting transition temperature T^ through the 

superconducting gap energy, this can be transformed to 

^rr:. = ^T^'"i-^^'^-(>-Ol (2.25) 
1.3We 

for T/Tg~l/2 and Rj^^lohm, which are typical parameters for the junctions studied in this 

report. 

This magnitude of fluctuation certainly can have very significant effects in 

washing out subde structures found in noise-free calculations. Many people have studied 

the noise effect on a Josephson junction with or without ac driving.^^'^^ The agreement 

between these theories and the experiments is very good, showing the power of classical 

statistical mechanics in predicting a totally random process. 

2.4.1.   Noise effect on an autonomous Josephson junction (i   =0). 

In tills case, tiie RCSJ model including noise is: 

d\       1    d(}>     .   ^ 
__ + + sin0 =  i   +i (t) (2.26) 
dx2       p^l/2  dX dc      n^ ^       . ^ 

where {3^, i^^ are defined the same way as (2.12); i^ is the noise current. For the time 

being, for simplicity reasons, we assume that i^^ is the noise current caused by thermal 

noise. Then its power spectrum is frequency independent, and its randomness can be fully 

characterized by the autocorrelation function: 
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<i^(T)i_^(x + T')>  =-l-i5(T') (2.27) 

where x and x' are times measured in units of cOp-^ and y is defined the same way as in 

(2.24). Eq. (2.27) is the dimensionless equivalent of the more conventional formula: 

< yt) yt + f) > =4-|-5(f) (2.27a) 

(Note that 5(t') = 5(x') cOp). The dimensionless formula (2.27) tells that the combination 

of the dimensionless parameters p^. and y is the measure of the noise level in the system. 

Two systems having the same values of j3^ and y are subject to the same level of noise, 

regardless of whatever their absolute parameters may be. Apparendy, this statement is also 

valid in a nonautomous case (ijc'^O). 

Eq. (2.26) is exactly the same as that for a particle moving in a potential with 

damping and subject to Brownian bombardment The potential U((t)) = -( cos<{) + i^(j)) is 

plotted vs. ^ in Fig. 2.9. Pictorially, it looks very much like a tilted washboard, and 

people quite often refer this potential as a "tilted washboard" potential. Without noise, the 

particle will stay in one of the potential wells (if it was there at the initial moment) until the 

tilt makes the energy barrier AE vanish, which corresponds to i^c = 1- Then the particle 

starts rolling down the potential; the finite speed it gains as it slides down in the presence 

of damping corresponds to the finite voltage ( V « d(})/dt), which appears on the dc 1-V 

curve. However, in tiie presence of noise, even before i^^ = 1 is reached, the noise can 

kick the particle out of the potential well and make it start sliding down. The way the 

particle slides down can be quite different, depending on the damping. For a harmonic 

oscillator: 

—i- +  + (|) = 0 
dx2       pi^2 ^^ 
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Fig. 2.9 

Schematic of the tilted washboard potential. 

we know that the critical value of P^, = 1/4 divides the solutions into two quite different 

categories. One ((3^ > 1/4 ) is underdamped, the morion is oscillatory, and the pendulum 

will pass its equilibrium point many times before settles down. The other ( P < 1/4 ) is 

overdamped, the pendulum will approach the equilibrium point with infinitesimal speed, 

and never pass it. In our case, even though the system is nonlinear, the above picture is 

still correct in the sense that there is a critical value of damping. Above it is the overdamped 

regime, in which the escaping particle will be recaptured by the next well and has to stay 

there for a while to be kicked out again. Below the critical damping, in the underdamped 

regime, the particle will gain enough kinetic energy during the acceleration process to be 

able to climb over the next energy barrier. It then keeps accelerating until the stable speed 
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is reached, at which the damping force counter-balances the gravitational force. The I-V 

curves corresponding to the two regimes have quite different features; also, the noise 

effects in the two regimes are quite different. One can imagine the noise has more effect on 

an underdamped regime since when the particle is kicked out, nothing will stop it; while in 

the overdamped regime, the noise has to kick the particle out of each well in turn. 

Kramers^^ did a very detailed study on noise-activated escape phenomena in his 

historic paper dated in 1940. He discussed three separate approximations, depending on 

the degree of damping: light, moderate, and heavy damping. Other researchers^^-BS 

applied his results to Josephson junctions and found the following results: 

A)   Overdamped regime. 

Ambegaokar and Halperin^^ first studied the extremely overdamped case with 

Pj,=0. Their results can be summarized as follows. 

In an extremely overdamped regime ( P^ = 0)- the heavy damping makes the drift 

velocity much smaller than the average speed of Brownian motion, so the velocity 

distribution can be well characterized by a Maxwell distribution. Then the two-dimensional 

Fokker-Planck equation which governs the two-dimensional distribution function P((j), 

d(t)/dt, t) will reduce to the one-dimensional Smoluchowski equation, which can be solved 

by integration. The escape rate T'^ thus obtained can be related to measurable quantities in 

such a way that in an overdamped regime, since the particle can only hop a distance 2K at 

once,  27CX-1   gives the average speed of the particle thus the average voltage of the 

junction, i.e. 

2eV 
^g—= 2nt-i (2.28) 

The numerically integrated I-V curves are shown in Fig. 2.10, where different 

curves correspond to different levels of noise characterized by y. Although the results of 
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V  - Voltage (reduced units) 

Fig. 2.10 

Current-voltage characteristics of Josephson junction at different noise levels in the (3 =0 

limit. (After Ref. 36) 
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Ambegaokar and Halperin were derived in the limit of P^=0, P.A. Lee showed^^ that 

these results were also valid in the finite P^. case, as long as {3g«l is satisfied. The 

results of Fig. 2.10 have been very well verified by many experimental groups. (Ref 40, 

for example.) 

B)   Underdamped regime. ((3^ » 1 ) 

P.A. Lee-^° got the following result for the escape rate from a potential well. 

^A   -AE/kaT   . 
T-^ = — e (2.29) 

where co^ = C0p(l - i^'^)^''^ is the oscillation frequency at the bottom of the potential well 

reduced from co   due to dc bias. 

hi 1 
^ = "T [ ^cic ( 2sin i^^ - 7t) + 2 cos ( sin" i^ )] (2.30) 

is the energy barrier shown in Fig. 2.9. This result (2.29) can be understood very easily: 

in unit time, the particle will try co^/2rc times to escape, but only those which have energy 

comparable to AE have a chance to succeed. The fraction of these particles among the 

total is e-^^^"^, which explains the Boltzmann factor in (2.29). 

In principle, we can measure this escape rate direcdy. In this underdamped 

regime, the particle will accelerate to its fuU speed whenever it is kicked out of the well. By 

providing a sudden dc bias i^^, and measuring the delay time for the system to switch to 

the finite voltage state, we will get the lifetime x as a function of i^j^. However, this is not 

the way most people measure x"^ 

Since this premature switching ( switch at i^c < 1 ) is caused by random kicking, 

the system will not switch at the same place if we repeat the process. Instead, we will get a 

distribution P(id^) which is related to X"^ by"*^ 
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'dc 

P(i J = t-1 (i^^) (i)"^ [ 1 - j P(u) du ] (2.31) 

0 

where the third factor on the right is the fraction of the systems (in a stadstical ensemble) 

which remain unswitched when i^^ is reached in the sweep. Apparently, the switching 

probability should be proportional to that. Also, the switching probability should be 

proportional to the escape rate X~^. I is the rate at which we sweep the dc bias current. If 

we sweep very fast, the system will not have much chance to switch at i^^, thus PCi^c) is 

inversely proportional to the sweep rate. 

Fig. 2.11a is a schematic drawing of a set of P(i^) at different temperatures. It 

shows that, as the temperature increases, the system tends to switch at smaller dc current 

i^; also the switching spreads out over a bigger range. The width of the distribuuon a 

varies with temperature roughly as T^^, as shown in Fig. 2.11 b^^. 

With the measured switching distribution P(i^^), we can easily infer the escape 

rate f^ Many experiments'^ 1' ^3-25 ^^^^ ^jgg^ done to check (2.29), and, so long as 

sufficient care is given to excluding extraneous noise, all the reports agree with (2.29) very 

well except at very low temperature, where the macroscopic quantum tunneling rate 

dominates the thermally activated hopping.^^'^S 

From Fig. 2.11a, we can see that the peak postion of P(ij^) is changing with 

temperature. In an experiment, this peak position corresponds to the measured critical 

current, since the maximum of P(i^p) is the point at which the system most likely to 

switch to nonzero voltage state. Danchi et al.'^^ derived an approximate formula to relate 

this peak position i^^'^P with y (inversely proportional to temperature). Their result is: 

V^ Y 7tV8 yi 

We have checked this result in our simulations ( Chapter IV ). The agreement is 
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Fig. 2.11 

(a) Schematic of the probability of the noise-induced premature switching vs. the dc bias 
current, (b) Schematic of the width of the switching distribution vs. temperature. 
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very good even for the P^ ~ ^ case, even though this formula is derived in the P^, = <» 

limit. 

From (2.32), we can see that besides the thermal energy parameter y, the 

dimensionless factor (co WI) also determines the measured critical current. Although 

this logarithmic dependence is not a very sensitive function, in a simulation study, due to 

the slowness of simulations, digital or analog, co IJ I is usually many orders of 

magnitude smaller than that of an experiment. In a digital simulation, we can make CO and 

Ig the same as that in the experiment, but in order to produce an I-V curve in ~10 hours, 

we have to make the sweep rate dl/dt about 10^ times of the experimental sweep rate, 

thus making the factor co I^ I about 10^ times smaller than that in the experiment. In an 

analog simulation, we can make I^, and I the same as that in the experiment, but O)/27t 

is typically not much higher than 10"^ Hz, compared to the typical plasma frequency in a 

real Josephson junction 10^^ Hz, so we have a factor of 10^ difference again in the factor 

One must compensate for this large disparity in co ly I, which makes infrequent 

events not observable in simulations. Quantitatively, if we wish to make the simulated 

measured critical current the same as that of the experimental one, we have the following 

relation :^2 

exp      ln[co7lfP/78:t/'^M-p] 
^'— =  (2.33) 
Y ln[co^""f""/y8 7rf™i^^] 

This result can be generalized to a more general case when an ac drive is present. 

Recalling from (2.24) that 

^ = TTT =    .       2 (2.34) 

which tells the relative height the energy barrier compared to the thermal energy,   y 
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determines the effect of noise on switching behavior. However, we have to keep in mind 

that the frequency range in a real experiment (the attempt frequency (Sijln ~ W^ Hz) is 

quite different from that of simulations (10^ Hz typically). This large disparity in 

frequencies makes some rare switching event observable in a real experiment but not in a 

simulation for the same noise level y. To compensate this lack of chances, we have to 

increase the noise temperature in simulations to make the less frequent events observable in 

simulations. Quantitatively, if we assume the peak rather than the rms value of noise plays 

the key role in triggering the system switch from one state to another (which is apparently 

the case in dc switching, since only the noise that can kick the particle above the energy 

barrier plays a role in triggering switching), then for Gaussian noise, the probability that 

an excursion equalling or exceeding a critical amplitude A({>, sufficient to switch to another 

attiractor, is reached in N^= (njliz attempts (per unit time), is 

a 

Roughly speaking, P=l can serve as a criterion, below which the system remains 

unswitched, and above which the system has switched. With this rough criterion, we can 

determine a threshold value of noise level, above which the noise will trigger the system 

switch from one state to another. Thus by setting P equals to unity, we obtain the threshold 

condition: 

y(A(l))2/4 = lnN^ 

Notice that in both experiments and simulations, the critical amplitude ^^ is the same. 

Thus we can relate the threshold of noise level in the experiment and simulation in the 

following way^^: 

Sim   _   'exp   _   ^"^^a       _   l'^ ^0       _  ^ 
T V        ~   1    xT^ini   " ~r~A    ~ (^-^^^ e'^p       y,i^       InN; In 10 

This result is consistent with the result derived for the autonomous case ( 2.33) 
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where the effective noise temperature in experiments and simulations is scaled the same 

way as (2.35) except where N^ is more explicitly written as (co IJ I). 

2.4.2     Noise effect on a nonautonomous Josephson junction (i   i^Q). 

P.A. Lee-^° studied the noise effect on a radiation-induced Josephson step for an 

overdamped case. His results are summarized as follows: In an ac voltage-biased junction, 

on a radiation-induced step ( n = integer), the corresponding Fokker-Planck equation is 

essentially the same as that for a purely dc biased junction in the zero-voltage state, except 

a) The current and the voltage should be understood as the increments from the 

center of the step. 

b) The critical current I^ is replaced by the noiseless half width of the current step in 

question   I^^ = I^JnCw). Thus the dimensionless noise intensity now is 

Y      Hye 

c) There is an extra noise term due to the finite linewidth Af of the radiation. The 

equivalent effective noise temperature is given by 

n^ Af      \     1 

^ \       n i 

for the nth step. 

a) and b) will make a radiation-induced step have a noise-rounded comer very 

much like the one in the autonomous case ( Fig. 2.10) except the current and the voltage 

are now measured from the center of the step. As for c), for the typical parameters of the 

junctions we have studied, and a narrow linewidth of a coherent laser radiation, ( Af = 

1-10 MHz ) T^f is not too important for lower order Josephson steps (T^jf<0.2K for 

Af=10MHz, ljl^=5, R=3^, and n < 2 ). 

2(#) 
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Although Lee's theory has been tested favorably'^2,44^ ^^^ applicability to the 

junctions studied in this report is very questionable. The main reason is that we are in an ac 

current biased case, and the associated subharmonic steps are not included in the theory. In 

addition, our high [3^ (>4) values make our junctions underdamped, and the associated 

hysteresis is another feature not included in the theory. A noise-induced premature 

switching seems to be a better picture in this region. But due to all the complexities of 

nonlinear dynamics, the noise effect on both dc and ac current driven junctions is far more 

complicated than the autonomous (\=0) case (Eq. (2.29)). To our knowledge, there is no 

analytical result for the effect of noise on an ac current-biased junction in an underdamped 

regime. In Chapter V, we will discuss the noise-induced switching in a special region 

where the dimension of the basin boundaries is close to the dimension of the basin itself.'*^ 

So far, all the theoretical derivations assumed the noise current in (2.26) is caused 

by thermal noise. From its autocorrelation function (2.27), we know that the noise power 

spectrum is white ( frequency-independent), and its spectral density only depends on the 

thermal bath temperature T. This assumption is justified when we deal with the switching 

problem from a zero-voltage state, and it has been very well verified'* ^'^3-24 However, 

in an ac driven Josephson junction, unlike a dc switching experiment in which the junction 

stays in the zero voltage state until switches, we often deal with Josephson steps at finite 

voltage. Especially in the far-infrared frequency range, the eV at the finite voltage steps is 

of the order of thermal energy kgT. There is then an extra noise in addition to thermal noise 

at the bath temperature, due to the incoherent quasipanicle tunneling current. The noise 

power spectrum caused by quasiparticle current is given by'*^ 

P/co) = —11  (V+—)cothl—    + 
^ 111      "^ Q •- 2 k„ T -* 

(2.37) 

+ In.(V ) coth I _—_. I  } 
qp^       e ^ 2 k„ T -■  -' 
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where the noise power spectrum is related to the rms value of noise current by the relation: 

<5lS = jPj(co)dco (2.38) 

In the zero voltage and frequency limit, this noise power spectrum will reduce to 

that of the Johnson noise formula. But in general, this power density is higher than a pure 

thermal noise, since besides thermal fluctuations, this formula includes two more 

fluctuations: 1) fluctuation in the numbers of charge carriers in transport due to the 

discreteness of quasiparticles; 2) quantum fluctuation of an electromagnetic field in its 

ground state. At far-infrared frequencies, these two fluctuations are comparable or larger 

than thermal fluctuations, so we can not ignore them anymore. From (2.37), we can see 

that the complete noise form is a nonlinear function of V and to. It is difficult to 

construct such a complicated noise form in simulations, especially in analog simulations. 

Chapter V will discuss how to approximate this complicated noise form by an equivalent 

thermal noise. 

There are two kinds of charge carriers participating in the charge transportation 

process: Cooper pairs and quasiparticles. If the pairs tunnel independently of one another 

in analogy with quasiparticles, a dc supercurrent I^ should be accompanied by a pair shot 

noise of spectral density: 

2 
Ps = — (2e ) I^ (2.39) 

271 

where 2e is the pair charge. The existence of such a noise source would play an important 

role, especially on the zero-voltage state. But so far, all experimental evidence indicates 

that such a fluctuation does not exist ( 10"^ - 10'^ ^ below the predicted value from 

(2.39) ). This suggests that the Cooper pair tunneling is a coherent process, with no 

associated fluctuation. 



CHAPTER  m 

EXPERIMENTAL TECHNIQUES 

3.1 Introduction 

The major experimental work reported here was done on a series of Nb-aSi-Nb 

junctions made by the SNAP ( Selective-Niobium-Anodization-Process ) technique. These 

junctions have a fairly high critical current density ( ~ 9000 A/cm^) and low resistance (a 

few ohms). The all-refractory-metal nature of these junctions turns out to be a very 

atti^ctive feature for practical purposes. The junctions are extremely durable. During four 

years, the junctions' I-V characteristics have not changed noticeably, despite the fact that 

some of the junctions have thermally cycled between room temperatiire and liquid helium 

temperature about one hundred times. Besides, tiie junctions' tunneUng barrier (~40A Si) 

is very resistant to electric shocks; the junctions' resistance can be measured directly with 

a hand-held digital voltmeter, which sends an electric shock big enough to damage quite a 

few other types of junctions ( Sn, NbN for example). 

The radiation source is a COj laser-pumped far-infrared laser, described in detail 

in two previous Technical Reports'*^''*9. The cryostat is a metal dewar made by 

Cryogenic Associates with a quartz window allowing the desired radiation to go through. 

Extremely careful attention has been paid to noise shielding and ground loop problems. 

This chapter will deal with all these experimental aspects. 

3.2 Sample preparations 

The Nb-aSi-Nb junctions were made at Sperry Research Laboratory by their 

well-developed SNAP ( Selective-Niobium-Anodization-Process ) technique^^'^^ -j^e 

following is a brief review of it. 
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A cross-sectional view of the completed device is shown in Fig. 3.1. The process 

begins with a trilayer of Nb, amorphous Si (aSi), and Nb, which have been previously 

deposited on a 2" oxidized Si wafer. The aSi barrier was partially hydrogenated, as part of 

a series of experiments aimed at improving device quality. A layer of SiOj (not shown) is 

deposited and patterned by a wet chemical etch, leaving squares of material wherever 

junctions are desired. This serves as a mask during die anodization step, during which the 

Nb counterelectrode is converted to NbjOg everywhere except under the Si02. The 

anodization is performed at room temperature. The electrolyte is a mixture of 156-g 

ammonium pentaborate, 1120 ml ethylene glycol, and 760 ml H^O. A platinum cathode is 

used, and electrical contact to the partially submerged Nb anode is made above the surface 

of the electrolyte. Niobium is the only anodic conductor exposed to the electrolyte. A bar 

of photoresist prevents the surface of the meniscus of the electrolyte from contacting the 

niobium, which insures that a well-defined area is anodized. With these precautions the 

anodization process itself provides a means of detecting when the entire unprotected Nb 

layer is completely anodized. The remainder of the SiOj is then etched away. While 

photoresist can also be used as the anodization mask, SiOj is preferred for small 

undercutting or perimeter effects. The anodized trilayer, which has essentially been 

convened to an insulated base electrode, is next patterned by plasma etching, forming half 

of the antenna structure. A second SiOj layer is then deposited, and "vias" are etched 

down to the junctions. This SiOj serves three functions: 1) it insulates the edges of the 

patterned trilayer, 2) it reduces the parasitic capacitance of die completed device; 3) it serves 

as an etch stop for the final Nb layer. The device is completed by depositing and patterning 

a Nb layer which contacts the junction and forms the other half of the antenna. With the 

sole exception of the NbjOg, all layers were formed by sputter deposition and were 

subsequently patterned by subtractive etching through a photoresist mask. It is important 

to point out that the crucial part of the junction, the Nb-aSi-Nb trilayer, is deposited 
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Fig. 3.1 

Cross sectional view of a SNAP junction. 



49 

without breaking vacuum. 

Fig. 3.2 displays four SEM micrographs at increasing magnification of a SNAP 

junction at the center of a -180 |im long dipole antenna used for coupling to the FIR laser 

source. The junction has a tunnel area ~2|im2. Fig. 3.2(a) shows one-half of a 

2mmx4mm chip upon which two devices are fabricated. The dipole antenna is the top of 

the "T" in the top part of Fig. 3.2(a). At the bottom of the figure 100|imx200|im pads can 

be seen, to which 25|im diameter gold lead wires have been bonded. This sample chip is 

glued to a 6mmx6mm Si carrier chip. Gold lead wires connect the small pads on the 

2mmx4mm junction chip to larger (Immxlmm) pads on the carrier. A close-up of the 10 

|im line-width antenna is shown in Fig. 3.2(b). In this micrograph the antenna axis is 

vertical. The horizontal bars on the left are the two dc leads. A further close-up is shown in 

Fig. 3.2(c) and (d). The smallest square at the center is the tunnel junction, which consists 

of successive layers of Nb, aSi, nonanodized Nb, and the contact layer of Nb, as also 

shown in the center of Fig. 3.1. 

The next larger square, ~33\im across, is the via etched in SiOj. Here, the base 

electrode and the contact layer are separated by the thin aSi barrier layer and Nb205. This 

region is estimated to contribute 0.016pF of the parasitic capacitance across the tunnel 

junction. The larger (ll|im)2 region of overlap, where the Si02 greatiy decreases the 

specific capacitance, is estimated to contribute another 0.016pF to the parasitic capacitance. 

The capacitance of the junctions cannot be measured directly; we can only estimate 

it from the measured area and the specific capacitance of the junction. The junction area 

could not be accurately measured from the micrograph, because the junction is covered by 

a layer of Nb which tends to shift the apparent edge of the junction inward by an unknown 

distance, as shown in Fig. 3.2. A better estimate of the area is found by dividing its 

measured critical current by the critical current density, which was estimated to be 

9000A/cm2 from measurements with larger junctions. The specific capacitance was 
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Fig. 3.2 

SEM photographs of a SNAP junction, 

(a) One-half of a 2namx4mm chip with two devices, (b) Close-up of the antenna region at 

the center of (b). (c) Close-up of the junction region at the center of (b). The junction is the 

smallest area at the center of the two larger squares, (d) Same magnification with (c) but 
viewed from a different angle. 
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measured to be ( 0.035 pF/iim^ ) (±15%) from resonances in SQUIDs prepared on the 

same wafer, using junctions of the same current density but of larger area (Tjim^). Since 

the critical current density varies by 50% accross the whole wafer, the junction area 

estimated in this way can only be accurate to several tens of per cent. Including the 

uncertainty in the specific capacitance, we can only estimate the junction capacitance at best 

to 20-30% (0.1 l±0.03pF). Chapter V will discuss how to determine the capacitance more 

accurately by comparing the experimental results with simulations. 

A typical dc I-V curve without radiation is shown in Fig. 3.3. The not-too sharp 

gap structure and the subgap structure at {di^+di^ll indicate that the junction is shorted by 

some small area metallic link^^. This is verified by our measurement of the depression of 

the critical current by a magnetic field; we could not depress the critical current to zero but 

only to 10% of its original value by magnetic field. Also, the Rjeai/^ ratio is quite low 

(~3) compared to the oxidized-soft-metal-barrier junction (~10 typically). This high 

leakage feature makes the junction not a very good candidate for SIS mixers; its 

photon-assisted-tunneling steps are not too sharp. But despite this drawback, the junction 

is extremely robust in botii thermal cycling and surviving electric shocks. At Sperry Lab. it 

has been reported^ ^ that some of tiie similar junctions have been thermally cycled 600 

times between room temperature and liquid helium temperature, with no apparent changes 

in critical cuirent greater than ~1%. Also, the aSi barrier seems to be very strong to electric 

shock. It was reported^^ diat the junction can stand a half-volt electric shock; this enables 

us to use a normal DVM to measure the resistance of the junctions. The junctions have 

perhaps gone through many unexpected shocks without being destroyed. Its robust 

features make a SNAP junction a very reliable element in all the potential applications of 

Josephson devices. 
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Fig. 3.3 

Dc I-V curve of the SNAPl junction. 
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3.3       Laser and coupling antenna 

3.3.1 The laser source 

The laser set up shown in Fig. 3.4 is essentially the same as that in the previous 

Technical Report'^", except for some minor changes: 

i) We moved the chopper from in front of the COj laser to in front of the pyroelectric 

detector. The advantage of doing this is that we do not have to stop the chopper when we 

take data, so we can continue monitoring the laser power level during data taking. Also, 

the new optical path makes the beam splitter more perpendicular to the beam (-80° 

compared to ~45° before), so less power is reflected by the beam splitter, more power 

goes into the dewar. 

ii) The vacuum window for the FIR laser cavity used to be made of BaF2, which 

functions pretty well in the shorter wavelength range of the CO2 laser radiation, 

9.2-11.2)j,m, (the pump line for the 604 GHz far-infrared radiation is 9.5 )im). But in the 

longer wavelength range, the high absorption of BaFj makes it fragile to thermal shock. In 

fact, we broke quite a few BaFj windows when we tried to run at the 10.3|im CO2 line, 

which is the pump line for the 419 GHz far-infrared laser radiation. As a solution, we 

replaced the BaF2 window by a ZnSe window, which has a very low absorption 

coefficient in the range of 0.5-22p.m; with the anti-reflection coating, those ZnSe windows 

are supposed to have a transmission coefficient bigger than 99% at 10}j.m wavelenth.^'* 

3.3.2 Coupling antenna 

At far-infrared frequencies, due to the short wave-length ( submillimeter ), the 

standard wave guide and resonance cavity techniques become awkward. Instead, 

integrated thin-film antennas have been used extensively. Among various types of thin-film 

antennas, dipole and bow-tie antennas are the most commonly used. The bow-tie antenna 

is a broadband device; its impedance is virtually frequency independent, which is an 



CO 2 Pump Laser 

Beamsplitter r^ ■Chopper 

Pyroelectric 
Detector 

FIR Laser Cavity 

Capacitive Mesh Input ZnSe 
Output Coupling Mirror     Coupling       Vacuum       r^„^i^„„ 

Diaphragm    ^-^^^^      Cauplmg 

~ f/50 
< Metal Dewar 

Quartz Window 

en 
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Optically-pumped far-infrared laser set-up 
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attractive feature for coupling in a broad frequency range. We will discuss this in more 

detail in Chapter VI. The junctions studied in this report are attached to dipole antennas. In 

the following, we discuss the resonant frequency and resonance width of a dipole antenna 

with a finite width on a dielectric substrate. 

By using an equivalent circuit depicted in Fig. 3.5, 

Incident wave 

H 

X 

Antenna 

ant 

> 
Load 

e 

Fig. 3.5 

Equivalent circuit of a dipole antenna. 

^load 

we can treat the coupling dipole antenna as an ac voltage source with a finite impedance; 

the e.m.f. and the impedance of the source are functions of length and width of the antenna 

relative to the wavelength of the radiation source. The power dissipated in the load 

impedance is given by: 

,2 
1  ,.2_   ._     .       1      lEh^^^l 

P = T'I'R^(Zioad) = 
ant load 

-Re(Z,  J 
2 load-^ (3.1) 

where \f^ is the effective length of antenna. It is defined in such a way that the product of 

heff and the incident electric field E in the far space gives the source voltage V    across 
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^ant"*" ^oad- ^^th h^fj and Z^j are complicated functions of the length and width of the 

dipole antenna. In order to optimize the coupling, which is the power dissipated in the 

load, we have to optimize: 

1) h,^ 

2) 
'Z  , + Z,  J^ ant     "oad 

1) Optimizing h^^. 

For a tiiin flat strip dipole antenna witii a widtii w, it can be shown^^ that it is 

equivalent to a cylindrical antenna with a radius a = w lA. Then we can use all the 

numerically calculated results for a finite radius cylindrical antenna in reference 55. The 

parameter Q=21n(I7a) characterizes the resonance width of antenna, where L is the full 

length of the dipole antenna concerned. As shown in Fig. 3.6(a), tiie peak of Ih^^jl for an 

infinite thin antenna (Q=oo) takes place at L = A,. 

In Fig. 3.6(a), as i2 decreases (tiie radius of the antenna increases), not only the 

resonance broadens, but also the resonance peak shifts in the L<X direction. This shift is 

caused by the finite-size effect: the thicker the cylindrical antenna is, the larger its 

capacitance is, thus the lower its resonant frequency is, which is equivalent to a smaller 

value of LA, at resonance. In our case, the length and the width of the antenna are 

respectively 

L=180|im,   w = 4a=10|im 

which gives: Q = 2 In (L/a) = 8.54 

From the Q = 10 curve in Fig.3.6(a), we can see that the peak position takes place at 

L«(2.5/7t)>.=0.8X. 

Re(Z,^^^) 
2) Optimizing  

iz , + z, .r ant     "oad 

In the general case, when Z,^^^ can be varied, the product is    maximum when 
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Fig. 3.6 (a) Effective length h^ of receiving antenna normalized to the wavelength X^ as a 

function of KJJXQ (=Poh shown in the figure) with Q=10, 12.5, 15, 20, oo. (After Ref. 

55)   (b) Measured impedance of receiving antenna as function of L/2;io (=hAo i" the 

figure). The soUd Une is the real part of the impedance and the dashed line is the imaginary 
part. (After Ref. 55) 
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* 
'ant ^oad ~  ^a 

But in our case, Zj^^ is fixed; also "Z^^^ is the impedance of the parallel connection of 

R, C, and L (the nonlinear Josephson inductance), which is typically a few ohms for the 

SNAP junctions we have studied. This impedance is two orders of magnitude smaller than 

that of the lowest impedance of the antenna near any resonance. So the problem of 

optimizing {Re(Zj^3^)/IZ^j+Zj^j2} reduces to minimizing IZ^^^J. From Fig. 3.6(b), we 

can see that both the real and imaginary parts of the impedance of the antenna are very 

sensitive functions of the antenna length.One feature to be noticed is that the imaginary 

part is minimum at L=V2 and L=X,, these are the resonant wavelengths of the antenna. 

At these values, the antenna is purely resistive; when LA crosses these resonances, the 

reactance of the antenna changes from capacitive to inductive or vice versa, like that in a 

resonant LCR circuit. However, the variation of the real part R makes the overall 

performance of the antenna quite different at the half-wave resonance and the full-wave 

resonance. From Fig. 3.6(b), we can see that R is maximum at L-X, the resonance at 

full wavelength is antiresonance^^ C^^ant' ^^ niaximum); while the resonance at half 

wavelength is normal resonance. 

To optimize the product 

I E h „ 1^ I h „ 1^       2 
eff eff       I F I 

Z      +Z,     .1^ IZ      '^ 
ant     ^oad a ant 

we are facing the competition of \^^ being maximum at L = X,, and IZ^J being minimum 

at L=V2. Fig. 3.7 is the plot of Ih^fj/Z^J^ vs. L/X based on the numerical computed data 

from the reference (55); we can see that the changing of Z^^ dominates the changing of 

the product. The coupling of power to the load is maximum at about L = X,/2, L=0.45 X to 

be precise for Q=8.5. Taking the substrate into account,^' the resonant wavelength is 

increased from the value for an antenna isolated in vacuum by a factor a~^; from Fig. 

3.8, for e^ = 12, which is the dielectric constant of Si substrate, the correction factor is 
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Fig. 3.7    Calculated results of the square of the effective length over the antenna 

impedance vs. Tzhfk, with fl=8.5. The calculation is based on the data of h^^^ and Z^^ on 

page   736, "Waves and Antenna", King and Harrison, M.I.T. Press! Cambridge, 

Massachussets. After taking the dielectric constant of the substrate into account, the' 
antenna resonates at 380 GHz, with a relative Unewidth Af/f   =0.24. 

Fig. 3.8   Reduction factor a of resonant frequency vs. the relative dielectric constant of 
the substrate. 
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about 2, that means the resonant wavelength would be twice as large as whatever 

calculated for the antenna isolated in vacuum. Thus the resonant wavelength for our 

antenna is 

.        ^    L      ^     ISOLim 

0.45 

In other words, the resonant frequency is about f^.^^ = 380 GHz. From Fig. 3.7, the 

fractional resonance width is about (AL/L^^)=0.24=l/4, so the resonant bandwidth is 

(Af/f^^)= 1/4, or Af = ±50 GHz. 

3.4        Noise Reduction 

3.4.1     Introduction 

From the discussion in section 2.4, we know that due to its small characteristic 

energy-fiye, a Josephson junction is subject to all kinds of noise, thermal or electrical. We 

can classify the noises concerned into two categories: 

a) Intrinsic noises, including thermal, shot and quantum noise; these noises are always 

present at finite temperature, finite voltage and high frequencies. We cannot ignore them in 

any simulational and theoretical analysis of the experimental result. One of the major goals 

in this report is to study how these noises interact with a very sensitive nonlinear system. 

Fortunately, these noises mentioned above have been well studied, and the noise 

correlation function and power spectrum are known results; we can at least in principle 

predict the effect caused by these noises. 

b) Extrinsic noise, including all the electromagnetic signals, random or non-random, 

sneaking into the experimental system, affecting the behavior of the Josephson junction 

studied. Several examples of such noises are: Electromagnetic radiation from a radio or TV 

station; low frequency electromagnetic fields caused by power lines; mechanical vibration 

coupled into the system through magnetic fields; the fluctuation of laser power, etc. All 
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these noises are unwanted noises. Their waveforms tend to be so complicated that a 

theoretical analysis is impossible. Our environment contains so much of these kinds of 

extrinsic noise, that they usually dominate the intrinsic noise unless the extrinsic noise is 

substantially reduced. 

There has been a strong indication that there is a large amount of extrinsic noise 

present in our experimental system. For example, in 1983, Danchi et al."^^ analysed their 

data taken with and without laser radiation from the same set-up we have been using, but 

before the noise reduction was done. They found that they had to use noise equivalent to 

thermal noise at ~10K to make the simulation results fit to the experimental ones. This 

noise level is far above the thermal noise at the ambient temperature (1.4K), indicating 

there is some unknown noise in the system. More systematic studies on noise effects on a 

Josephson junction have been done in the same experimental set up later by the author. 

This study involved measuring the switching distributions as Fulton and Dunkelberger 

did'*^. The measurements were done on several Sn-SnOj^-Sn junctions with unfluctuated 

critical current typically about l-10|iA. The result of one series of measurements is 

shown in Fig.3.9. The unfluctuated critical current of the junction calculated from the I R 

product is about 7|iA; from the estimated value of the capacitance of the junction, 

C=0.05pF, which is typical for this kind of junction^^, we have: iTco/kg^SK. Since the 

cross-over temperature of the escape rate between thermal activation and the MQT 

tunneling rate takes place at -Rc0p>7kBT, where "=" holds only in the absence of 

dissipation^^, in the temperature range above 1.5K, we should not expect a strong MQT 

effect. 

As we increase the temperature from 1.57K to 2.83K (the ambient temperature is 

increased successively from I to A), the peak of the distribution shifts in the direction of 

lower current. This is not surprising, since the unfluctuated critical current goes down as 

the temperature goes up, and the bigger noise at higher temperature tends to make the 
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Probabilities of switching distribution measured from a Sn-SnO^-Sn junction in 

the temperature range of 1.37K-2.83K. The unfluctuated critical current is estimated to be 

7|iA from the I^R^ product. As the temperature increases, from I to A, the measured 

critical current decreases (the peaks of the distribution shift to the low current end); the 

width of the distribution decreases too. 
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system switch to the non-zero voltage state at a smaller current. This combination of effects 

will decrease the measured critical current, making the whole distribution curve shift to the 

left. What is strange is that as the temperature goes up, the width of the distribution goes 

down, which is the opposite of what the thermal activation model predicts (cf. Fig. 2.10b). 

We are facing the dilemma: there are two parameters characterizing the distribution 

function, the position of the peak I/'^P and the width of the distribution AI^. If the 

switching is caused by purely thermal noise ( or other noise having the same 

autocorrelation function as that of thermal noise ), I ^"P and AI   will be related to each 
C C 

other in such a way that with one fitting parameter, the ambient temperature T, we can fit 

the theoretical curve to the experimental one. But in our case, the one fitting parameter 

thermal activation model will not work because if we choose T such that the theoretical 

I^exp fijg ^jjj^ jhe experimental one, then the AI^ will not fit; the same thing will happen if 

we try to fit AI^ first. 

This dilemma indicates that some kind of noise not characterized by the same 

correlation function as thermal noise is present in our system, which is hardly surprising. 

Given the fact that our environment contains so many electromagnetic signals, random or 

non-random, our system will be inevitably affected by them if we do not take special 

precaution. 

3.4.2    Techniques of noise reduction. 

This section is devoted to the problem how to avoid (or minimize) the extrinsic 

noise. We found tiiat ref (58) is an excellent guidance book in helping to achieve this goal. 

The way a noise source affects a system can be understood in a very simple 

picture, Fig.3.10: 
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Illustration of noise coupling into an experimental system. 

The noise reduction can be achieved in three ways: 

1) Remove the noise source moving noisy equipment to a place sufficiently far 

away that the noise source will not affect the system concerned. This is not practical in 

general. In our case, the signal measuring set-up must be physically close to some noisy 

equipment such as a CO2 laser containing an electric discharge and the laser power supply. 

So we have to try to find a way to break the coupling at a later stage. 

2) Shield the set-up completelv from external electric and magnetic fields This can 

be done partially without too much difficulty by shielding the cryostat and the instruments. 

But from later discussion in this section we will see that no material can shield 

electromagnetic fields completely, unless we use a closed superconducting chamber, 

(which is impractical in our case since we have to allow FIR laser radiation to be coupled 

into the junction). Thus there is always some noise present inside the shield. 

3) Reducing the pick up hv the receiver-—This involves reducing the area of circuit 

loops; eliminating ground loops; filtering all the dc leads. 

Since we can not do very much about the noise sources, the noise reduction work 

is focused on 2) and 3). These are discussed, in turn, below. 

Shielding: 

Shielding can be specified in terms of the degree of reduction in electric and/or 
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magnetic field strength caused by the shield. We define the shielding effectiveness factor S 

as: 

S = 20 log (Ej/E/) (dB) (3.2) 

or S = 20 log (Hj/Hi') (dB) (3.3) 

where Ej(Hi) are the incident fields, and E/(Hi') are the transmitted fields as shown in 

Fig. 3.11. 

Shielding effectiveness varies with frequency, geometry of shield, position within 

the shield where the field is measured, type of field being attenuated, direction of incidence 

and polarization. For simplicity, we will only discuss the shielding provided by a plane 

sheet of conducting material. The results of the plane sheet calculations are useful for 

estimating the shielding effectiveness of other geometries. 
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H2 H 

Shield 

Fig. 3.11 

Illustration of transmitted electric and magnetic fields through a plane sheet. 
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Apparently, two types of loss are encountered by an electromagnetic wave striking 

a metallic surface, a) The wave is partially reflected from the surface due to the impedance 

change at the interface; b) the transmitted portion is attenuated as it passes through the 

medium due to dissipation. The total shielding effectiveness of a sheet is equal to the sum 

of the absorption loss (A) plus the reflection loss (R) plus a correction factor (B) to account 

for multiple reflections in thin shields. Total shielding effectiveness can be written as: 

S = A + R + B (3.4) 

The multiple reflection can be neglected if the absorption loss A is greater than 10 dB. 

i) Absorption loss 

When an electromagnetic wave passes through a conducting medium its amplitude 

decreases exponentially, i.e. 

E   = F   p- t/S £-2 - EQ e (3 5^ 

H2 = Hoe-'^5 

where Eg and HQ are the fields at the boundary, t is the distance within the medium, and 

E2 and H2 are electric and magnetic fields measured at t respectively. The skin depth 5 is 

given by 

5 =. /      meters (3.6) 
V co|ia 

If we use room-temperature copper as a reference material, we can express 5 as 

5 = —7==;   inches (3.7) 

where f is the frequency of the electromagnetic field in Hz. [i^ and a^ are permeability and 

conductivity measured in units of [i and a of copper. Table 3.1 gives the skin depths of the 

three most commonly used metals, copper, aluminum and steel. 
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Table 3.1 

Frequency 5 For 5 For 5 For 
Copper Aluminum Steel 

(in.) (in.) (in.) 

60 Hz 0.335 0.429 0.034 

100 Hz 0.260 0.333 0.026 
IkHz 0.082 0.105 0.008 
10 kHz 0.026 0.033 0.003 
100 kHz 0.008 0.011 0.0008 
IMHz 0.003 0.003 0.0003 
10 MHz 0.0008 0.001 0.00008 

Table 3.1. Skin Depth of Various Materials. (Henry W. Ott "Noise Reduction Techniques in Electronic 

Systems". John Wiley & Sons, New York) 

The absorption shielding factor A thus can be written as 

A = 20 [i] logj^e = 8.69 [i]   dB (3.8) 
5 5 

Combining with (3.7), we have: 

A = 3.341 ^f|i^a   dB (3.9) 

where t  is in units of inches. For a 0.02 in.-thick Cu sheet, at 22 kHz, A=10dB; above 

this frequency, the absorption loss is abeady greater than 10 dB, so multiple reflection 

correction can be neglected for f>20kHz. 

ii) Reflection loss. 

For the geometry in Fig. 3.11, the transmitted E and H fields are: 

E  =——i_F 
2    z  +Z     1 

2Z, (3.10) 
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where Z is the impedance of the electromagnetic wave defined as 

Z = E/H (3.11) 

For a plane wave (far field) incident on a medium with (e, |i, a) 

y a+jcoe 
Z=/^^ (3.12) 

■jcoe 

For insulators, a « coe. 

■7? 
which reduces to the well-known result Z^=3nQ in a free space, where 

|i = ^iQ = 47cxl(r''H/m 

e = 60= 8.85x10-12 F/m 

For a conducting material, a »coe; then 

(1+j) (3.14) 

The amplitude of Z can be written as 

IZI=/mt= 3.68x10-7        —JfQ (3.15) 
V   a V ^r 

where/ is the frequency in Hz, |ij. and a^are the relative permeability and conductivity 

with respect to those of copper. Table 3.2 gives the impedances of the most commonly 

used metals, copper, aluminum and steel. 
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Table 3.2 

Materials Z(Q) 

Copper 3.68xl0-^xfi/2 
Aluminum 4.71xl0~''x f^^^ 
Stainless Steel 2.60xl0~^x f^^^ 

Table 3.2. The impedance values of Cu, Al and Fe. 

The transmitted fields, if only subject to the reflection loss at the two interfaces (excluding 

the absorption loss and the multireflection correction) are: 

4Z^Z2 
E,' = ^^— E 

1 2      1 
(z^+z^r 

Ki' = ^Hi 

(3.16) 

In getting this result, we have assumed 

7  =7 ' 

Note that even though the electric and magnetic fields are reflected differently at 

each boundary, the net effect across both boundaries is the same for both fields. However, 

since the major reflections for E and H fields takes place at different boundaries, the 

multiple reflection correction factor B is quite different for each case. For E field, since 

most of its incident field is reflected at the first boundary, (cf. (3.10)), the multireflection 

of the remaining transmitted field will not affect the overall shielding significantly 

regardless of the attenuation. However, for H field, the transmitted field in the medium has 

the same order of magnitude as the incident field. If the attenuation loss does not reduce 

this transmitted field substantially, the multiple reflection will enhance the transmission 

through the whole sheet significantly. 

If the shield is metallic and the surrounding area an insulator, then Z^ » Z^, and 
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p • = £F 
1       ^7 1 

^1 (3.17) 

a) Shielding effectiveness for far-fidH.  ( Zj = Z„ = 377fi ) 

Combining (3.15) with (3.17), the reflection loss for a plane wave can be written 

Zi 
R = 201ogl42'' =168-101og(^i//a) (dB) (3.18) 

Fig. 3.12 shows the combined shielding effects of absorption and reflection for a 

0.020-in. thick copper shield for far-field electromagnetic fields. We can see that the shield 

is very effective ( > 140 dB ) for all the frequency range for the far field shielding. 

However, in the near field case {T<X/2K ) the situation is more complicated. 

b) Shielding effectiveness for near-field. 

If the field is produced by a short (compared to X) rod or straight wire antenna, 

the source impedance is high. The wave impedance near the antenna—predominantly an 

electric field—is also high. As distance is increased, the E field decreases as l/r^ while the 

H field decreases as l/r^, the ratio E/H approaches from above to Z^=371Q. at around 

r=V27t. While if the field is produced by a current loop antenna, the wave impedance near 

the antenna is low. As the distance is increased, E decreases as l/r^ while H as l/r^, the 

ratio E/H approaches Z^ from below at around T=X/2K. In a laboratory environment, the 

strongest field is produced by the ac-power line, which generates both E and H field at 60 

Hz and its higher harmonics. The corresponding wavelength X is in the order of 10* km; 

thus all the experimental set-ups are exposed to such near-field perturbation. Since the 

impedances of the near electric and near magnetic field are quite different, the shielding 

effectiveness can be quite different for them. 
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Fig. 3.12 

Shielding effectiveness of a 0.02-in. thick copper shield in the far field. (After Ref. 58) 
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i)   Near electric field. 

For a near electric field, since its impedance Z^ > Z^, from Eq. (3.10), the 

reflection loss at the first surface of the shield is bigger than that of a plane wave; thus the 

total shield effectiveness is greater than for a plane wave. With even a rather thin copper 

sheet (0.02-in.), we should have no trouble to obtain a 140 dB or better shielding. 

Quantitatively, when r < XIITI, the impedance of the near electric field of a point 

source is given by 

Z, = -i- (3.19) 
27cfer 

tf we insert (3.19) into equation (3.18), we obtain the reflection loss given by 

1 4 5x10^ 
R = 20 log = 20 log 9^^ dB (3.20) 

87cferlZ2l frlZ^I 

With copper, 7^ = 10"'' Q; if r = Im, then R^ = 180 dB for f=10 MHz, above which the 

attenuation loss will dominate, 

ii)  Near ma^etic field. 

When r < XIIK, the impedance of a near magnetic field of a point source is given 

by 

ZH = 27if^tr (3.21) 

For low frequencies (f ~ lOHz), Z^ is not much bigger than the impedance of a 

metal sheet. The reflection loss shielding is not too effective. Combining (3.21) with 

(3.18), we have the reflection loss for near-magnetic field: 

^    ._,     27if|ir    ^^,     1.97x10"^ fr   _ 
logTiTT" °^""^ —izH— ^^-^^^ 

*   If a negative value is obtained in the solution for R, use R=0 instead and neglect the multiple reflection 
factor B. The error occurs because the assumption Zj»Z2 is not satisfied. 
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For a copper shield, if f = lOHz, and r = Im, then R = 20 dB, which is not a very effective 

shield. 

In addition to this ineffective reflection loss shielding, the multiple-reflection 

enhanced transmission will make the shielding of near magnetic field even worse. Since 

Z2=Zj, from (3.10), we know that most of the incident magnetic field will penetrate into 

the shielding media. Although a major part of this field will be reflected by the second 

surface, as long as the thickness t is small compared to the skin depth 5 (which is the case 

at low frequency, since 5 oc co"^^^), this reflected field will again be partially reflected back 

by the fu-st surface. This process will go on and on until the field is sufficiently attenuated. 

This multiple reflection will reduce the shielding effectiveness by the correction factor B, 

which can be calculated to be 

B = 20 log (1 - e'^'^^ )   dB (3.23) 

One way to decrease this multiple reflection is to use magnetic material such as \i 

metal. It increases the absorption loss, since the permeability increases more than the 

conductivity decreases for most magnetic materials. However, even though |i metal is 

much better than copper for low frequency magnetic shielding, it is not nearly as effective 

as a copper shield for near electric field or plane wave. Thus we should keep in mind that 

no matter how much shielding we have, we always have some low frequency magnetic 

field present in our system. Reducing the effect of such fields has to be done by carefully 

reducing loop area and grounding, which will be discussed in the following section. 

Reducing noise pick up. 

Although we always have some low-frequency magnetic field present in our 

system, by careful wiring and grounding, we can reduce the influence of such field by a 

substantial amount. The effect of wiring and grounding can be best understood from the 

testing result^^ shown in Fig.3.13 and Fig. 3.14. The test is done in a configuration that 
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Fig. 3.13 Results of inductive coupling experiment; all 

circuits are grounded at both ends. (After Ref. 58) 

Fig. 3.14 Results of inductive coupling experiment; all 

circuits are grounded at only one end. (After Ref. 58) 
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the wire to be tested is inductively coupled to a 50 kHz ac source; the pick-up voltage from 

the wire is measured across the IMQ resistor. 

All the configurations in Fig.3.13 have a ground loop, which effectively increases 

the loop area by a substantial amount. In this case, twisting and shielding wires do not 

yield much improvement in attenuation. The configurations in Fig.3.14 do not have this 

problem, and showed a large improvement. 

Configuration (I) is the best for low frequency magnetic shielding, i.e. a shielded 

twisted pair with only one end of the shield grounded is what we want for a low noise 

set-up. That is because, (I) does not have the drawback as (G) and (K), which either has 

the shield as a signal wire, (G), or has the shield connected to a signal wire at both 

ends,(K); so that any noise current flowing through the shield might affect the signal. It is 

always better to connect the shield and signal conductors together at just one point. That 

point should be such that the noise current from the shield does not have to flow down the 

signal conductor to get to the ground. On the other hand, no grounding at all will provide 

no protection against electric field. The indicated lower attenuation of (I) compared to (G) 

can be improved by more turns/length (6 turns/ft was used in this test, which is a very 

coarse twisting). 

We chose to ground the amplifier end of the cable shields. The configuration of 

our experimental set-up is shown in Fig. 3.16. The metallic dewar is floated electrically 

from the laser table, which is a very noisy ground. As discussed before, this metal dewar 

should provide very good shielding against far-field electromagnetic fields and near electric 

field. The major noise inside the dewar is near magnetic field noise. To minimize the 

pick-up of this noise, all the signal leads are made of twisted pair with -10 turns/in. The 

current leads and voltage leads run down through separate metal tubes; this reduces the 

interference between the current and voltage signal. This is especially useful when we 

deliberately put some ac or noise signal down through the current leads and measure the 
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voltage response from the junction. The leads are filtered through low temperature 7t filters 

(Erie filters) before connecting to the sample; these filters should be sufficient to cut down 

the noise in the frequency range above IMHz flowing from the room temperature end of 

the leads. All the loop areas are minimized. 

Outside the dewar, all the leads are shielded twisted pair, with only one end 

electrically connected to the chassis of the amplifier (PAR 113 or Spectrum Analyzer), 

which in turn is connected to the ground of the ac power line. (Other grounding points 

have been tested, such as a waterpipe, which shows no difference from the present 

configuration). The shield of the current measurement cable is only ac electrically 

connected to the chassis (through the 1000 pF capacitor). By doing this, we broke the 

ground loop between the current and the voltage cable shields at low frequencies (at 

-IkHz, l/coC~lMQ), but at high frequencies (when f>lGHz, l/coC<lQ), we effectively 

have a multipoint ground system to minimize the ground impedance; (As a rule of thumb, a 

system with a physical dimension greater than one-twentieth of the wavelength concerned 

should have a multipoint ground.^°) An isolation transformer is used to break the potential 

ground loop between the neutral power line and the ground. (As required by the National 

Electrical Code, the two are connected at the main service entrance, which is perhaps the 

basement of the building.) Complete disconnection with the power line is impractical in 

our case, since we have to use some ac-powered apparatus such as an oscilloscope or a 

X-Y recorder to monitor the experiment 

• This configuration proved quite effective in reducing noise pick-up. Even though 

the whole set-up is not in a screened room (it is in the same room with a noisy laser source 

plus several mechanical pumps.), the noise pick-up is below the instrumental sensitivity. 

Fig. 3.16(a) shows the power spectrum taken from a IkQ resistor connected in exactly the 

same way as our sample is supposed to be. From 10 Hz to 100 kHz, there is no 

observable noise above the instrumental background noise, which is —150 dBV (relative 
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Fig. 3.16 Power spectra measured from a IkQ resistor connected at the position of the 

"sample" in Fig. 3.15. (a) From the present set-up (Fig. 3.15). (b) From the previous 

set-up, in which no special care was taken to minimize noise pick-up. 
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to IV^/Hz); even the seemingly ubiqitous 60 Hz noise is not detectable. This is certainly a 

great improvement from the experimental set-up when we took the data shown in Fig. 3.9. 

The power spectrum taken from that set-up is shown in Fig. 3.16(b). It shows a large 

amount of low frequency noise, mainly 60 Hz and its harmonics. It is not surprising to see 

some behavior not explainable by the thermal activation model, because there are all kinds 

of low frequency noise in the system, which will inevitably affect the switching behavior 

of the junction. 

As a quick check, we measured the power spectrum from a Josephson junction to 

see if there is any obvious sign of extraneous noise in the system. Fig. 3.17 shows the 

power spectrum measured from a SNAP junction at room temperature. The junction is dc 

biased at 1.75mA. According to Rogers and Buhrman^^, the resistance fluctuations due to 

the filling and emptying of localized electron states in the tunneUng barrier should give rise 

to a voltage power spectrum composed of several Lorentzian spectra. At room temperature, 

the superposition of the numerous Lorentzian power spectra forms an essentially 1/f noise 

spectrum. That is what we have seen in Fig. 3.17. The power spectrum is clean and 

structureless; it has a precise 1/f envelope, extending over five decades in frequency. The 

power density at the high-frequency end, -150 dBV, is close to the instrumental 

sensitivity. Clearly, with the old experimental set-up, (cf. Fig. 3.16(b)), the low-frequency 

power spectrum would be dominated by the 60 Hz and its harmonics. 
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Fig. 3.17 

Power spectrum measured from a SNAP junction at room temperature. The 

junction was biased at 1.75mA. The spectrum shows a clean and structureless 1/f form 

over five frequency decades. 



CHAPTER  rV 

ANALOG SIMULATIONS 

4.1        Introduction 

As discussed earlier (in Chapter I), it is impossible to monitor the phase motion of 

a Josephson junction because of its high frequency nature. To study the response of a 

Josephson junction beyond some time-averaged characteristics such as the step width vs. 

laser power, we have to appeal to simulations. 

Digital simulations have certain advantages: 1) Being very accurate, all the 

parameters can be controlled to an accuracy many orders of magnitude beyond the 

experimental ones. 2) Flexibility. It allows us to insert whatever types of noise we want, 

such as voltage-dependent shot noise and frequency-dependent zero-point fluctuation. 

Also, it can accomodate a complicated nonlinear quasiparticle I-V characteristic. 3) All the 

results are computed and stored digitally, allowing them to be analyzed in detail by 

computers. However, despite its advantages, digital simulation is seriously limited by the 

computing speed. Even though the computing power of today's computers is enormous, it 

takes typically many hours to produce a simulated I-V curve. It is very difficult and tedious 

to explore a large region in parameter space, which is what we usually have to do because 

of the large uncertainty in experimental parameters. 

Analog simulation can close this gap between the experimental study of a real 

Josephson junction and digital simulations. An electronic analog has an advantage in 

demonstrating qualitative behavior quickly over a wide range of parameters and can usually 

have quantitative results to a precision of a few percent. It is fast enough that we can take 

I-V curves at the same speed as in an experiment; also it is slow enough (~ 10"* Hz 

typically) that we can study the phase motion and frequency spectrum with conventional 
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instruments. 

Based on the RCSJ model, there have been a few electronic Josephson analogs 

invented."^'"^ We have compared the performances of the two most commonly used 

ones, the Henry & Prober design^^ and the Magerlein design.^^ 

1) Henry & Prober design 

It uses a VCO (Voltage-Controlled-Oscillator) to generate a pulse sequence whose 

frequency G^/QQ is proportional to the applied voltage, i.e. cOy^Q = aV + b. These pulses 

are  used to control a sample-hold circuit, whose input is from an external sine-wave 

generator with a frequency co^j^. The output of this sample-hold circuit is a staircase-like 

sine wave, whose frequency co is adjusted in such a way that 

co = o)vco-«3ig = aV (4.1) 

We can define a phase (j) such that 

.     i = o) ^ (4.2) 

Thus we have an electronic circuit whose output satisfies the two Josephson 

relations: 

Is = I<,sin(t) (4.3a) 

d(t) 
•^ = aV (4.3b) 

This circuit is quite simple compared to most of the others in Ref.60-62. It gives 

reasonably good results. The main drawbacks of this circuit are: 

i) It is a relatively slow device. If we do not want the staircase too coarse, we have 

to be limited to 

CO      _      VCO       sig   ^   QQ2 

'^vco ^vco 

With the commonly used eclectronic components, we can get the circuit working pretty 
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well at (Hy^JlTi = lOOkHz, or co/27C = IkHz; above that we might have difficulty. 

ii) The device is not stable. Since it requires an external signal generator, it is very 

hard to maintain the external signal generator and the VCO in phase because of the drift of 

electronic devices. In our experience, even after half an hour warm-up, there is still 

noticeable drift between the two devices. 

2) Magerlein design 

This analog does not have the problems above. It is a faster device, (10-100 kHz); 

it does not require an external sine-wave generator, there is no problem of stabilities. In 

addition, the sincj) generator generates a waveform much better than a staircase-like sine 

wave. Given all these advantages compared to the other model, even though the circuit is 

much more complicated than that of Henry & Prober, we still prefer it. This chapter will 

discuss the principle of operation and the performance of a Mageriein simulator. We will 

also compare the simulation results with some experimental ones. 

4.2        Analog circuit for Magerlein design simulator. 

4.2.1     The principle of operation. 

To make a Josephson junction analog, the key part is to generate some current 

which is a sine function of the integral of the input voltage; i.e. we need to generate 

I   = I sin <J) 

2e f 

0 

There is no problem to build an integration circuit to generate a voltage which is 

the integral of the input voltage. But if the input voltage is a dc voltage, this integration will 

soon reach the limit voltage of the circuit and saturate it. To avoid this problem, we realize 

that we are not interested in 0 itself but sin<t), which is a periodic function of ^. Thus we 
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can generate a voltage proportional to (() or (TC - (])) in the range (}> = ( -nil, 37t/2 ), and 

extend the voltage periodically beyond this range. 

In Magerlein's design, we generate a voltage V. such that 

K^_i^ -7r/2<(t)<;c/2 
T v^ - i (4.5) 

max *^ 71 - d) 71/2 < dX 371/2 

V = V 

where 

<1) = 27ckJ Vdt 
0 

/: is a constant determined by the threshold voltage V^^ and the RC constant of the 

integrator.   V^^ is some preset voltage; when I V^ I exceeds it, the integration circuit will 

reverse its polarity. By using the trigonometric relation 

, sin 0 = sin (7t - <|)) (4.6) 

we have 

r    V   -, 
sin [-^-^J = sin({) (4.7) 

2      max 

Thus if we use a sine converter to generate die sine of [(7t/2) V/Vj^^] and then 

convert it into current, we have a current satisfying equation (4.4). This procedure can be 

understood easily with the illustration of Fig. 4.1.   ' 
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Fig. 4.1 

Illustration of the principle of function of Magerlein's simulator. 

First we generate a voltage which is a periodic function of <)) with a period 2K; the 

function form is a triangle wave. Next, we use a sine converter to convert this triangle 

wave into a sine wave. Note, when we talk about wave, we mean in (}) space instead of the 

time domain; when the input voltage is dc, (() «= t, and the waveform in the time domain is 

also sinusoidal. But the result (4.7) is obtained without any assumption on the time 

dependence of V; it is valid for any time-dependent V. 

Fig. 4.2 shows a block diagram of this circuit. 
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Block diagram of Magerlein's analog simulator. 

The input voltage V (or -V, depending on the initial position of the electronic 

switch) is integrated through the integrator, the output voltage of the integrator is 

constantly compared with the two limiting voltages ( -V , V ) of the window 

comparator. When the integration voltage goes beyond (-V^^^.V^^), the comparator will 

send a pulse to the flip-flop and change its output state; this will change the switch position 

and reverse the input polarity of the integrator. Now -V (or V) will be integrated in this half 

cycle until the limit (-V^^, V^^^) is reached. This process generates V^. The next step is 

using a sine-converter, in our case, this is a differential amplifier with its saturation set at 

""^max' *^ g^" of ^he amplifier reduces at around V^^^ , so that this nonlinear amplifier 

makes the otherwise sharp cusp of a triangle wave rounded. With proper adjustment, this 

sine-converter should make a very good sine wave out of a triangle one; the best 

minimized distonion can be 40 dB below the fundamental, or 1%. 
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To convert the voltage V^ into a current is a fairly easy thing to do, which can be 

accomplished with one op-amp. 

Fig. 4.3 is the schematic of the circuit we made at Harvard. The components are 

quite different from Magerlein's original design. That is due to the author's preference for 

some components plus the convenience of obtaining them. The circuit works as follows: 

The input voltage V(t) is fed in through a buffer 356, then inverted in polarity by 

an inverter. V(t) and -V(t) are then sent into two analog switches composed of 1/2(4066). 

The two switches are controlled by two signals with opposite logic levels; i.e. one with 

high level and the other with low level, so that only one switch is conducting at any 

moment. This alternating switched voltage is integrated by an integrator whose output is 

fed into a window comparator whose window limit is set to be (-2V, +2V). Whenever the 

voltage from the integrator exceeds these limits, the comparator will send a negative 

transient voltage to the J-K flip-flop 74107 and invert its output state. (The normal output 

state of the comparator is high, which is enforced by the 2K pull-up resistor connected to 

the output of the comparator.) Thus the previously open switch in 1/2(4066) will be 

closed now and the previously closed one will be open. This will reverse the input polarity 

of the integrator which stans integrating the signal with the same amplitude but opposite 

polarity from the previous one. This process will go on and on. If the input voltage is dc, 

we will generate a triangle wave whose period is determined by the RC constant of the 

integrator and the ratio of the input voltage V to V 

If we do not take special precaution the circuit quite often locks up, especially at 

high frequency or large ac driving amplitude. To guarantee that the circuit will oscillate, it 

is necessary to have the speed-up 10 pF capacitor in the window comparator and the 

pull-down lOK resistor connected to the inverse input terminal of the integrator. The 10 pF 

capacitor composes a positive feedback loop, which speeds up the transition speed of the 

comparator. The function of the lOK resistor is such that, when the voltage V. from the 
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Circuit diagram of sirKJ) generator. 
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integrator exceeds (-y^^^, ^miJ, the switch (terminals 8 & 9 of the 4066) will be closed, 

and the voltage across the integrator capacitor will be discharged through this lOK resistor, 

which will bring V^ back into the interval (-Vj^^, Vj^j^). The output of the comparator 

then will go back to the normal high position and the comparator is ready for the next 

transition. This resistor proved to be crucial to the function of the circuit; its value is 

determined by the trade off of the pull-down effectiveness and the distortion it introduces. 

The value lOK is found to guarantee the oscillation at all the conditions we have studied, 

and the distortion on an otherwise perfect triangle wave is barely noticeable. (If the 

resistor is too large, it will have little pull-down effect; if too small, it will distort the wave 

form tremendously.) The output of the integrator is the V^ we discussed before, a fraction 

of which is sent into a variable-gain amplifier. By carefully adjusting the input level 

controller (2K pot) and the gain controller of the amplifier (IK pot of the amplifier), we 

can make the amplifier work in such a nonlinear region that the output from a triangle wave 

input will be very much like a sine wave. The distortion can be as small as 1% (40 dB), 

which is comparable to some commercial models of sine generator and good enough for 

most of the Josephson effect studies. 

As mentioned before, the limit voltage V^^^ and the RC constant of the integrator 

determine the oscillation frequency for unit input voltage. For a dc input voltage V, the 

slope of the integrated voltage V^ is 

dt RC 

It is clear that in the time interval (0, T/4), where T is the period, 

\'^ 

rises to the value: 



V      = 

90 

V  T 
max       RC 4 

f=^^ = k-V (4.10) 
max 

This has the same form as the Josephson relation 

f=i.*=i!}l=,«PV (4.11) 
27t ^^      27rtT 

(Note: Do not forget the factor {2K) in this formula!) 

In the simulator, we chose the values of V„,,  and RC such that shown in 

Fig.4.3: V^^=2V, R=1.9K, C=3300pF, so that: 

, Sim      20 kHz 
k      = —^^ (4.12) 

whUe 

k^'^P = 4.83x10^' ^ (4.13) 

Clearly, a real Josephson junction is a much faster oscillator compared to a simulator if we 

operate at the same voltage. The measured value of k^™ differs from the predicted one in 

(4.12) by a few per cent due to the precision limit of the electronic components such as R 

and C. This precision of k*™ is good enough for most of our purposes as long as we 

measure co and P^ accurately. 

The output of this sin<|) generator is converted into current through the variable 

resistor r (Fig.4.4a), and then connected to a resistor R(V) and a capacitor C in parallel, 

completing the circuit of the RCSJ analog. 

To approximate the nonlinear structure of the quasiparticle I-V characteristic at the 

gap, we build in a voltage-dependent piece-wise nonlinear resistor. (Fig. 4.4b) It uses a 

window comparator similar to that in Fig. 4.3; this comparator controls two analog 

switches. When IV(t)l > V the switch connecting R conducts; while when lV(t)l < V„, 

the switch connecting Rj^^ conducts. Here V   is the preset gap voltage, which is 
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Fig. 4.4 

(a) Analog circuit of the RCSJ model, (b) Circuit of the piecewise nonlinear resistor. 
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determined by later discussions. The analog switch 4066 is a very fast switch; its 

switching time is less than l]is. Thus this voltage-dependent resistor is controlled by the 

instantaneous voltage V(t) instead of some time averaged value of V(t). 

This circuit can be very easily generalized to include the famous coscj) term, which 

arises from the interference between Cooper pair current and the quasiparticle current. If 

we include the cos<l) term, the RCSJ model will be 

77 ^ :nH" [ ^^ ^'°'^] . "" ''"^ = 'do + ^ac s^" (—^) (4-14) dx^     B dx CO 
t^c p 

Notice the extra term [p^"^^ e cos<|) (d({)/dx)] is just a time derivative of sine}), 

which is very easy to construct. We neglect this term mainly because the present circuit 

gives very good results, comparable to the experimental ones. In addition, the existence 

and the sign of the cos<j) term is still lacking definitive experimental evidence. But in the 

future, it might be interesting to make systematic simulation studies of the cos(j) term effect 

on a Josephson junction. 

4.2.2    Convertine experimental values into simulation ones. 

It is worth discussing in detail how to convert the experimental parameter values 

into the simulation ones. It is clear in the dimensionless RCSJ model 

d%       1    d(})     . ^    .       .     .   r^L   \ 
7T^^:;;r:r''''"^='dc+^acSin(-^T)+i„(T)        (4.i5) 
dx'^    Bi^2 dx CO 

■^c p 

that five dimensionless parameters:   Oii^/ca^, P^,. he ^ac ^"^ y=hlJe(l^^R/4B)  totally 

determine the output of Eq. (4.15). Apparendy,   if we make a one-to-one mapping: 

(COL/COp)«P= (COL/COp)^i^, p/'^P = p/*^, i^/'^P = 1^^'*^, i^«p ^ ^jim^ ^nd f'^P = f^,   we 

have a simulator that completely resembles a real junction. 

Notice that (x)={(ii^/(a^), i=I/I^ are only relative ratios; we can choose the 
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denominators as some convenient values, and vary the numerators accordingly. We chose 

in the simulator: 

I/™=lmA (4.16) 

and fp^™ = C0p^™/2:i= lOkHz (4.17) 

These two values will determine the capacitor value we should choose. Remember 

Thus 

%        =    ,   / 27tk     -— (4.18) 

and if we use the values fork*™,!/"", andcOp^™ in (4.12), (4.16) and (4.17), we have 

Csim = 32000 pF 

Choosing the value for R is not as flexible as for U™ and C""^. Since (3 is an 
C ~C 

absolute number, we have to choose R^™ according to a specific Josephson junction. For 

the SNAP junctions studied, by using the relation P^ = (co RC)^, we get: 

exn     r  3.4 useR^'^P 
P7= 1 " (4.19) c 30 use R"P 

leak 

Thus, to make 

. Sim 
„sim     f 3.4 useR' 
Pc    =1 -"^ (4.20) , Sim 30 useR,'^^ 

we get 

p^sim ^ 920 £2,        Rjeak'^ = 2.7 kQ 

by using the values of  cOp"'" and C"'"   chosen above. The gap voltage V   can be 

measured in the unit of junction parameter hfp/2e=fp/k, where k is defined in (4.11). For 
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SNAP junctions, V  = 2.8 mV, f = 400 GHz, while in all cases k^"? = 4.83x10^^ HzA^. 

Thus 

V/'^P =3.38f «''P/k«P 

If we translate this into simulator units, we have 

V/^ = 3.38 f ^"" /k^"" = 1.7V 

The noise source is a white noise generator whose voltage output can be converted 

into noise current through a source resistor R^. To make 

^jexp exp 

equal to 
ySim 

sim 1 c 
Y      =  : T-^  (4.23) 

, sun   ,-2„sun,-TIN Tlk (IjjR     /4B) 

(where L is the rms noise current in bandwidth B,   and R^''" is R ^'"^ or R,   , ""^ " n leaK 

depending on whether the operating point is above or below the gap), we have the 

following relation linking the noise current in simulations with the noise temperature in 

experiments: 

sim    T^^P 
^exp ^     1    (k_^J ^    j2^sim/4g ^4) 

kg     j^exp^ jsun      n ' 
c 

This tells how much the equivalent noise temperature T^'^P is in an experiment for given 

noise current Ij^ in simulations. 

Table 4.1 summarizes the results discussed above, listing the conversion relations 

between the experimental and the simulational parameters. 
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Table 4.1 

Parameters Experiment Simulation 

k^'^P = 2e/h 
'       mm   max 

I exp 
c 

T smi 
c 

c 

R 

(-exp 

Rexp R^ 

m cOp^'^P = [ (2e/fi) (yC) ] 1^ CO ^™ = [ 27C k"™ I/^ / C'*^ ] ^^ 

= [27Ck^''Pp''P/CP]l/2 

P. P exp _ ^ ^ exp j^exp (yxp ^2 g sim _ / ^^j sim p^sim Qsim \2 

V^^^P = a (h/2e) f ^''P 

= afp=''P/ k^'^P 

'w smi = (Y f sim / usim 

^dc 
i    exp _ T   exp / T exp ;    Sim _ T   sim / T sim 

ac 
i   *"? = T   ^''P / T ^"P 
ac ac      '   c 

;   smi _ T   smi / T smi 
ac ac      '   c 

^xp =-{iI^exp / gi^^ j ^im ^ (l/;iksim) j^sim /(I^2Rsim/4B) 

= (l/7tk«''P)I=''P/kRT 

P'^P = (l/kg) (k^™ / k^^P) (I/'^P / I^^™) (I^2Rsim / 4B) 

Table 4.1.   Converting relations between the experimental parameters and the simulational ones. 
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4.3        Performance of the simulator 

It is interesting to compare the performance of the simulator to predictions from 

an ideal RCSJ model. 

4.3.1     Performance of the simulator in the linear region. CA(j)«l 1 

1) Frequency response. 

In small phase approximation ( sin(j) = (j)), the RCSJ model reduces to a damped 

driven harmonic oscillator, whose resonant frequency is CO and the fuU width of resonance 

at the 3dB point Ao) is given by Aco=I3g-^/2c^p. Fig. 4.5a shows the frequency response 

of the simulator at small drive amplitude iac«l- The horizontal axis is the driving 

frequency normalized to fp-, the vertical axis is the amplitude of the voltage response V(t). 

The peak is indeed at the calculated f , and the width of resonance Aco/co =1/6 gives 

Pg=36, which is just the value we expected. 

2) The resonant frequency vs. dc bias, cOj^ - i^c- ' 

With the help of a tilted washboard potential picture, it is clear that when we 

increase the dc bias current i^, we not only tilt the overall washboard, but also change the 

curvature at the bottom of the potential well, thus changing the oscillation frequency cOj, 

there. Quantitatively: 

j~r _   mcos(t) 
~ V LC  " \J    2eC 

I""" fin^cos(t) /-nyi-sin <j))i'2 

"R "\/LC "\/~2ic~ " NV    '   2eC      " 
,^    .2 ,1/4 

= %(l-idc) (4.25) 

Fig. 4.5b shows the measured resonant frequency vs. dc bias current. The way of 

measuring cOj^ uses the fact that at oOj^, cOj^L = 1/cOj^C, the impedance of the parallel LC 

circuit is infinite, and thus all the current flows through the resistor. In this case, there is 

no phase shift between the current and the voltage. Having this in mind, we use a dual 
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Voltage response of the simulator to the drive frequency of an ac current with a 

small amplitude. 
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Resonanant frequency vs. the dc bias current. 
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trace oscilloscope to monitor both the current and the voltage on the same screen. If we 

adjust the driving frequency so that there is no phase shift between the two; then this 

driving frequency will be the resonant frequency cOj^ The determination of the resonant 

frequency in this way is certainly more accurate than by using maximum amplitude of 

V(t) as a criterion, since the peak of the response curve (Fig. 4.5a) is rather flat. 

The result shown in Fig. 4.5b is quite satisfactory compared to the theoretical 

curve. Now we know that the circuit works as it is supposed to, at least for small 

amplitude oscillations, and also we know that our parameter calibration is correct. 

4.3.2    Performance of the simulator in the nonlinear region. 

Fig. 4.6 and Fig. 4.7 show the performance of the simulator in a nonlinear region 

( sin<J) 9t (j)). Fig. 4.6 is a systematic checking of the damping effects on the hysteresis of 

the I-V curves. According to the digital simulation done by Stewart^^, the hysteresis 

should start when P^ takes a value in the interval (0.5, 1.0). Our result shows that the 

hysteresis starts at the value [3^=0.64, which is consistent with Stewart's prediction. 

(These I-V curves are taken with a linear resistance R instead of piecewise nonlinear one, 

so there is no ambiguity in p^). 

Fig. 4.7 shows the chaos threshold in the iac-(^/<^p) plane. We monitored V(t) 

with both a spectrum analyzer and a Poincare section monitor (which is a pulse generator 

synchronized to the driving frequency, whose output controls the Z-axis (brightness) of an 

oscilloscope). We define a chaotic state as a state such that the Poincare section has the 

pattern of a strange attractor and the power spectrum shows wide band noise. These two 

criteria are consistent in all our experiments; we have never found that one is statisfied 

while the other is not. In Fig. 4.7, chaos threshold data taken from a linear resistance 

simulator and one with the piecewise resistor are compared; the R^ is the same in both 

cases. The overall features agree with the previous work (cf. Fig.2.5 and Fig. 2.6). The 
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Fig. 4.6 

Simulated I-V curves with different damping. Note the hysteresis disappears at P =0.64. 
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Simulated threshold of transition to chaos in the iac-V^p plane. The squares are the 
data taken with a linear resistance which gives ^^=4; the dots are the ones from a piecewise 

nonlinear resistance with p^=4 (using R^^), and (3^=36 (using Rje^). 

threshold has its minimum at -2/3 cOp instead of at co itself. This is not too surprising 

because we are dealing with a large amplitude drive; when sin(!)^, the potential is softer 

than that of a harmonic oscillator, and the resonant frequency shifts to lower value. At 

lower frequencies; the threshold seems flattening out at i^j,==l. This means that, in an 

adiabatic case, when the driving current amplitude reaches the value of critical current, the 

system may start moving chaotically. (The motion of the system is not neccessarily chaotic 

for all the regions in i^^ > 1; there are chaos-free windows above the threshold.) As the 

driving frequency exceeds cOp, the threshold level goes up very quickly; in fact, when 

C0L/C0P=1.4, the chaos threshold for i^^ already exceeds 5. That is consistent with Kautz's 

result (2.22); when C0L/c0p»l, none of the oscillation modes in (0, co ) in the system can 

be excited (cf. section 2.3.2 of this report); thus chaos will not occur. 
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4.4       Study of noise effects on a Josephson junction with the simulator. 

It has been observed"^ that the critical current of some Sn-SnOx-Sn junctions 

shows temperature reentrant behavior. That is, when the ambient temperature goes down, 

the measured critical current I^.^'^P goes down too, after an initial rise just below T . This 

very abnormal behavior might have its root in some macroscopic quantum mechanics 

mechanism. But in classical mechanics, we have a possible explanation also: When the 

ambient temperature goes down, the leakage resistance goes up exponentially for an ideal 

tunnel junction. This causes a sharp decrease in damping, since P^^^R^, which could 

make premature switching more likely to happen, since a ball is easier to be kicked out of a 

less frictional well. This certainly is a qualitatively coirect picture. But quantitatively, it is 

not clear how strongly this damping effect will affect the switching behavior. We have 

theories for both very underdamped (Pg»l) and very overdamped (P^.«l) cases, but not 

in between, which is the region in which the junctions of interest fall. With the aid of 

simulations, we can very easily check the hypothesis that the temperature reentrant 

behavior is caused by the change of damping. 

Fig. 4.8 shows a set of I-V curves taken from the simulator at different noise 

levels. The noise current is converted into a y parameter by using the leakage resistance 

^leak- '^^^^ ^s justified, at least for up switching, since the ball was trapped in the potential 

well before switching, and the corresponding voltage is much smaller than the gap voltage 

Vg. For the down switching, the use of Rj^^ is justified for most of the cases also, 

because from the down part of the hysteretic curves shown in Fig. 4.8, the voltage goes 

down quite far below the gap voltage before it jumps down to the zero-voltage state. This 

observation is confirmed by monitoring the instantaneous voltage V(t) by an oscilloscope; 

its value remains all the time below the gap voltage right before the down switching 

happens. 

From Fig. 4.8, we can see that, as we increase noise (decrease y), the system 



102 

Fig. 4.8 

Simulated I-V curves taken at different noise levels with p^=4 (using R ), and 

Pc=36 (using Rie^). The factor y (using Rj^^) corresponds to the noise level in the 
SNAPl junction (I =425|iA). 
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switches at lower current values; this switching point is the measured critical current in 

experiments. Also, the down switching happens at larger current values. Eventually, the 

up switching and down switching overlap, and the hysteresis disappears. As we increase 

the noise further, we get a noise-rounded comer like that in Ambegaokar and Halperin's 

model (cf. Fig. 2.10) instead of a sharp up-switch resulted from a decisive, irreversible 

premature switching. 

Fig. 4.9 shows the noise-reduced critical current I vs. the noise factor y. I is 
C * C 

taken at the middle point of the distribution, and the data were taken from a large range of 

Pj,, from 0.5 to 400. The circled data are the ones taken on a nonhysteretic I-V curve like 

the ones in the lower half of Fig.4.8. The critical current in this case is defined as the 

crossing point of the extrapolation of the linear part of up switching curve and the 

zero-voltage axis. The smooth curve is an approximate theoretical result derived by Danchi 

et al. (Eq. (2.32)). The derivation is based on a purely thermal activation model and 

assumes Pg="». Surprisingly, we found that as long as the junction is hysteretic, no 

matter how small the P^, is, the measured critical current fits into the theory very well. But 

as soon as the hysteresis is gone, the measured critical current is always above the 

theoretical value for the zero damping case. A possible explanation is that when the noise 

level is so high that there is no other bistable state the system can jump to (no hysteresis), 

the ball has to hop well by well. This is very much the same picture as in Ambegaokar and 

Halperin's theory, in which the damping stops the ball from freely sliding further down. In 

this case, the noise effect of reducing die measured critical current is a rounded comer, 

which is much less significant than the noise-induced premature switching to the gap 

voltage in the underdamped regime. That is why we have bigger measured critical current 

than a hysteretic case. 

One may wonder why our results are so similar to those in the Ambegaokar and 

Halperin case, p^=0, while in our case, P^^l-lOO; the damping is not infinite even in the 
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Fig. 4.9 Measured critical current from the simulated I-V curves vs. y with different 

damping. The circled data are taken from nonhysteretic I-V curves. The solid curve is from 
the approximate formula (2.32) derived in the ^=00 limit. 
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nonhysteretic cases. 

The answer may lie in the famous fluctuation-dissipation theorem, which states 

that the damping R and the fluctuation I^^ are related in such a way, that 

I„2R OC kgT (4.27) 

In our simulations, we can vary I^^ and R independently; we do not have to keep their 

product constant. This is somehow artificial compared to an experiment in a real physical 

system. But if we assume that (4.27) is valid in our simulations and interpret R as some 

damping factor not necessarily equal to the resistance value, then we can say that if we 

increase the noise current I^^, we either increase the equivalent noise temperature with the 

damping unchanged; or equivalently, we decrease the R value (increase the damping) to 

keep the equivalent noise temperature constant. The first viewpoint is a more helpful 

picture in the hysteretic case, since damping has no effect, while the second viewpoint is a 

more helpful picture in the nonhysteretic case, since in the small y limit in Fig. 2.10, the 

variation of y does not cause significant change in I-V curves, while change of damping 

may cause a very noticeable effect. 

From Fig. 4.9 we should be able to conclude that as long as the junction is 

hysteretic, the critical current is solelv determined by y and independent of (3 . Fig. 4.10 

shows the measured simulated critical current vs. |3^ with y kept constant. Again, the 

circled data points are the ones taken from nonhysteretic I-V curves. From this figure, we 

can see more explicidy that the measured critical current is independent of p as long as the 

I-V curve remains hysteretic. The data in Fig. 4.9 and Fig. 4.10 indicate that although the 

damping effect on noise-induced switching seems a very plausible explanation for 

temperature reentrant behavior, it is not applicable to the data of Akoh et al.^^ In their 

measurement, the temperature reentrant behavior occurs only for the hysteretic curves. 

There are some non-RCSJ-like, probably macroscopic quantum phenomena, implied by 

those data. 
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Measured critical current vs. |3^ at different y values. The values of (3^ are 
calculated from Rj^^j^. The circled data are taken from nonhysteretic I-V curves. . 

However, from Fig. 4.10 we can see that when the junction becomes 

nonhysteretic, the critical current is indeed dependent on (3^. P.A.Lee^^ generalized 

Ambegaokar and Halperin's ^^=0 theory to the case 0<Pg«l. However, to our 

knowledge, there is no theory about this problem covering the whole range of [3^. From 

purely empirical studies, we have found that in the nonhysteretic regime, the measured 

critical current has the following logarithmic dependence on y and P , with B/A=3/2. 

i^ = A In Y - B In p^ + C (4.28) 

Fig. 4.11  shows the plot of i^ vs. log(Y / P,,^*^), where the values of P^ are 

calculated by using Rj^^. The straight line is 

i/= 0.069 In [SxloV-^)] (4.29) 
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This straight line fits the data very well over an amazing large range of y 1^^^'^ (five 

decades). We have no theoretical explanation for this empirical result. Hopefully, it can be 

found in future work. 



CHAPTER  V 

DATA ANALYSIS 

5.1       Introduction 

We have studied the responses of several SNAP junctions to far-infrared laser 

radiation at 245, 419 and 604 GHz. It was later found out that the plasma frequencies f 

of these junctions are about 400 GHz. So at a driving frequency of 419 GHz, which 

resonates with the Josephson junction system, we should expect the system to show some 

strong nonlinear dynamic effects, such as chaos and high sensitivity to perturbations. 

Indeed, we saw some quite unusual behaviors of these junctions when they are irradiated 

at 419 GHz (f^/f ~1). For example, regions of meandering voltage may appear on an 

otherwise well-defined and flat step. At such chaotic parts of the I-V curves, there is an 

extremely high level of low frequency noise, corresponding to a thermal noise temperature 

of ~10^^ K at frequencies around 100 Hz. Negative resistance regions are also observed. 

At some laser power levels, the I-V curves show some subharmonic steps (1/2 or 2/3 ) in 

the absence of an adjacent integer step (the 1st step). None of these phenomena have been 

seen in the lower current density junctions studied in this frequency range.^^-'^^ The lower 

plasma frequencies of those junctions make the frequency ratio f^ / f ^ 2. ( For Junction 

P89 in ref. 49, which is the most studied junction in that report, f = 100 GHz, so even at 

245 GHz, fL / fp = 2.5 ) From the state diagram in Fig. 2.5 and the argument in section 

2.3.2, we know that chaos is very unlikely to happen at this drive/plasma frequency ratio. 

At 604 GHz, for the SNAP junctions, fL / fp = 1.5. From Fig. 4.7, we know that 

the chaos threshold is very high (i^^ > 5 ) in that case. In our experiment, we did not see 

any of the chaotic behavior mentioned above. But serious deviations of the measured step 

widths from the simulated ones have been observed^^. That is probably due to the 
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instabilities caused by being close to chaotic regions. 

At f^ = 245 GHz, which corresponds to fL / fp = 0.6, this frequency ratio is in 

the parameter region where chaos should be most likely observed (cf. Fig. 4.7). In fact, at 

this frequency we did see in general that the I-V curves appeared to be very noisy, but we 

did not see any meandering steps or subharmonic steps. This less chaotic behavior might 

be explained by the fact that the dipole antenna resonates at 400 GHz (cf. Fig. 3.7), so the 

coupled laser radiation power at 245 GHz is insufficient to drive the system into a very 

nonlinear region. 

Finding out the parameters of the junctions is a very crucial step in analyzing the 

experimental data by simulations. It turns out to be quite tricky for a junction with this 

small size (a few square ^m), especially if we want to determine the parameters within a 

few per cent. We will discuss in detail how to achieve this goal. Then we will focus on a 

narrow parameter region to study in detail the nonlinear dynamics behind the apparent 

chaotic behavior on the dc I-V curves, especially the interaction of a random noise source 

with a nonlinear system. The results are very interesting both for understanding the nature 

of randomness in a highly nonlinear system and building practical Josephson devices. 

5.2       Survev of the experimental results 

We have studied four SNAP junctions made on a single wafer in the same 

process. We have studied two of them in great detail; they are labled as SNAPl and 

SNAP2 henceforth. 

SNAPl has the following parameters:   Its area is about 5|im^; at 4.2K, I^, = 

425nA; V^ = 2A/e = 2.8mV, R^ = 3.3f2, R,^^ = 3R^= lOQ, and C = 0.23 ± 0.03 pF. 

The subgap leakage-resistance was measured by magnetic depression of the critical 

current. The capacitance value is roughly estimated from the SQUID resonance 

measurements on larger junctions made on the same chip, and finely adjusted by the best 
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simulation fits. From these parameters, we estimate that the plasma frequency f = 

390±20GHz, and the McCumber number (3^ = 3.3±0.4, for voltage above the gap (using 

RJ and p^ = 28±3 below the gap ( using R,^^). 

Since the junction impedance is quite low compared to that of the antenna 

(>100Q), and at 419 GHz neither of the conditions (2.10) is satisfied (o)L=l/coC=2^, 

R=3i2), the junction is effectively ac current biased. Accordingly, we should expect to see 

some associated nonUnear effects, such as subharmonic steps and chaos. 

Some of the I-V curves of an uradiated junction taken at certain laser power levels 

are shown in Fig. 5.1; the radiation frequency is 419 GHz. In Fig. 5.1, the ac current 

amplitude i^^ is assumed to be proportional to the square root of the laser power measured 

independentiy by a pyroelectric detector; the proportionality factor is determined by 

simulation fits. As we increase the laser power from the bottom trace (i = 0.92 ), the 2/3 

subharmonic step appears right below the 2nd step, with the 1st step missing. When we 

increase the laser power to i^^ = 1.49, both the 2/3 and the 2nd steps become very noisy, 

then they are totally destroyed at i^ = 1.53. There is a littie piece of negative resistance at 

the right edge of the 2nd step at iac=l-53. These I-V curves have several unusual features 

compared to those of better-behaved voltage-biased junctions.^^ 

1) Presence of a subharmonic step in the absence of the adjacent integer steps. 

Presence of subharmonic steps indicates that we are in an ac current bias regime, while the 

absence of the adjacent integer step tells us tiiat the system is in a highly nonlinear region 

where a more complex pattern of phase locking including subharmonic phase locking 

[d(|)/dt=(n/m)co] is favored over the simpler pattem ( m=l). 

2) Noisy steps. Although noisy I-V curves are sometimes seen in the junctions of 

ref.49, most of those noisy parts occurred between the steps of the I-V curves, especially 

at the edges of the steps. This is not too surprising since the dynamic resistance takes very 

large values at the edges of steps. Thus any current noise will be amplified there, causing 



Fig. 5.1 I-V curves of the SNAPl junction irradiated with 419 GHz radiation. The curve 

in the box is the simulated I-V curve for 1^=1.0. Both the experimental and the simulated 
I-V curves show the 2/3 step. 

N> 
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the system to be very sensitive to external perturbations such as laser power fluctuations 

and noise triggering. But in our case, whole steps ( 2/3 and 2nd steps in Fig. 5.1 ) are 

destroyed, and replaced by a step-like but very noisy part, instead of a smooth tilted 

free-running I-V curve. This behavior certainly cannot be explained by external 

fluctuations alone. The most likely explanations are either: (a) the system went into chaos 

in these noisy regions becoming phase-unlocked, or (b) these steps are so unstable that 

in the presence of unavoidable fluctuations (thermal noise, for example), the phase locking 

of the whole step is destroyed. 

3) A negative resistance region. This is a smooth part of some of the I-V curves. In 

Fig. 5.1, it appears at the right edge of the 2nd step for the curve with i^ = 1.53. It is 

reproducible for both up and down sweeps. There can be many explanations for negative 

resistance. In our case, ftxjm the simulation study of some other I-V curves discussed later, 

one possible explanation is that in the negative resistance region, the system is jumping 

back and forth between two states, due to noise triggering. If the lower voltage state 

becomes more stable relative to the higher voltage state as the current increases, the system 

tends to spend more time in the lower voltage state at higher current. Thus the 

time-averaged voltage goes down as the current goes up. If the fluctuating voltage is 

mainly at high frequency, it will be averaged out by our measuring instruments, yielding a 

smooth curve witii a negative slope. In the few reports of experimental studies of chaos in 

Josephson junctions, ^^'^' it seems to be a common phenomenon that a negative resistance 

is closely associated with chaos. 

Fig. 5.2 shows an even stronger evidence of chaos: at i^ = 2.0, the I-V curve 

showed a large 1st step, which did not appear at all for any of the laser power levels in 

Fig.5.1. The junction is phase-locked to the 1st Josephson step at the two edges of the step 

giving a well-defined flat step, but it wanders off from the step in the center. This 

meandering voltage region in the step certainly can not be explained by the fluctuation of 
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I-V curve of the SNAPl junction taken at 1^^=2.0. The big flat step is the 1st step; 

a region of meandering voltage is clearly seen far away from the step edge. The dashed line 

is the measured effective noise temperature  at lOOHz defined in (5.1). 
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the laser power alone, since this would only induce voltage fluctuations at the edges of 

steps, where I-V curves are most sensitive to laser power. In that case, the edges of the 

step should be destroyed first, before the center. 

The dashed curve in Fig. 5.2 is the noise power density measured at low 

frequency ( 100 Hz ) by using a PAR 124 lock-in as a bandpass amplifier. The noise 

density is converted into an equivalent thermal noise temperature defined as 

T   =  HEl— (5 n 
'I      4k„R B ^^-^^ B    n 

with B the bandwidth in Hz; the peak noise level is typically in the order of 10^^ K at this 

low frequency. Low frequency power spectrum measurements reveal that most of this 

extremely high level of noise is below 100 kHz. The spectrum at such low frequencies is 

usually some very complicated form with a roughly power law envelope 1/f", a = 1-4. We 

failed to understand these spectra. The main reason is because this frequency range is so 

low compared to the driving frequency ( 10"^ of fL) that it is impossible to study such a 

low frequency spectrum in either digital or analog simulations. Besides, the linewidth Af^ 

of the far-infrared laser is typically lOMHz, so MJf^^ = 10"^ In the time regime, that 

means the laser can be viewed as sending out a series of wave packets, each one having a 

duration of x = l/AfL=10"''sec or 10^ periods, but each wave packet being totally 

incoherent from the others. What we see in an experiment in the time scale of t is the 

averaged effect caused by a number t Ix of such incoherent wave-packets. So for a 

frequency such that f « Af^-lO^Hz, the frequency spectrum will be an extremely 

complicated averaged result caused by Af^/f incoherent wave packets. This fact makes the 

study of the frequency spectrum at low frequency ( < 100 kHz ) rather fruitless to attempt. 

In fact, we have tried to study the frequency response of the driven junction to some 

signals deliberately put into the system (white noise or sinusoidal signal, with typical 

frequencies ranging below 100 kHz); the resulting power spectra were too complicated to 



116 

understand in any evident way. We also tried to modulate the laser amplitude with a 

frequency f^^^, (f^ < 100 kHz) so that the laser radiation has two frequency components, 

^L"*" ^m' ^^ ^L' ^m ^ addition to f^. At the period-doubling bifurcation point, there should 

^ (^L'''fm)/2 and (fL-fni)/2 frequencies in the system as weU as f^/l. By using the nonlinear 

Josephson junction as a rectifier to demodulate the frequencies, we might be able to see the 

period doubling of the modulation frequency to fJ2.^^ This interesting test failed, 

perhaps because f^^^« Af^^. 

Instead of the low frequency power spectrum, we concentrate on some specific 

features on the dc I-V curves which all the incoherent wave packets will produce so that 

the averaged features are not different from the ones produced by a single wave packet. 

One such feature is shown in the I-V curve with i^^ = 1.0 in Fig. 5.1. The combination of 

the 2/3 step and the 2nd step is a feature independent of the initial conditions chosen for 0 

and d(t)/dt; in other words, two incoherent wavepacks ( equivalent to two different sets of 

initial conditions) will both produce this feature. In fact, this feature only depends on the 

junction parameters, cOp, [3^, and the external parameters i^^, f^. It was later found that the 

appearance of this feature is very sensitive to f^/fp, so it can serve as a "fingerprint" to help 

to find out what parameter range in f the junction belongs to. 

SNAP2 has a different fingerprint from that of SNAPl, even though they were 

made on the same wafer. SNAP 2 was designed to have the same area as that of SNAP 1, 

but for such a small junction this can only be confirmed to within 20% by SEM photo 

because tiie top surface geometry does not accurately reflect the real junction area. The 

junction has the following parameters: At 4.2 K, 2A/e = 2.8 mV, I^ = 520 |iA, R^ = 2.7 

^' ^leak = 8 Q. If this junction had exactly the same current density and barrier dielectric 

properties as SNAPl, we could just simply scale the capacitance to the critical current and 

obtain C=(520/425)x0.23=0.28pF. Since for a flat sandwich type of junction (uniform 

tunnel barrier), both the parameters   cOp = (lelJ^C)^''^ and (3^ = (co RC)^ are only 
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functions of the current density and the dielectric properties of the insulating barrier and are 

independent of the cross sectional area of the junction (if we ignore fringing effect), these 

two junctions should have similar co and P^, values. Since these two parameters totally 

determine the behavior of the Josephson junction, we should expect these junctions to have 

the same response to radiation even if they might have different areas. The only difference 

should be the absolute step widths, since the step widths scale with the critical current of 

each individual junction which is area dependent. 

However, this is not what we have seen. Although SNAP2 also showed chaotic 

behavior for a large range of laser power, it exhibits quite a distinctive difference in its 

irradiated dc I-V characteristics. In Fig. 5.3a, we can see tiiat instead of having the 2/3 and 

the 2nd steps, the I-V curves of SNAP2 showed the 1/2 and the 2nd Josephson steps. We 

could not find the 2/3 step at any laser power level studied. All we could see is a little 

bump at the left edge of the 1/2 step at certain levels of laser power shown in Fig. 5.3a; the 

top of that bump is roughly at the voltage value where the 2/3 step would appear. These 

different features on the I-V curves certainly indicate that the parameters co and P for the 

two junctions can not be exactly the same. This is hardly surprising since the critical 

cuixent density is a very sensitive function of the barrier thickness. If we change the barrier 

thickness by SA, the current density will change^^ by a factor of 10, so a subatomic 

thickness difference can cause significant change in the current density, and hence CO and 

P^,. For a sputtered amorphous Si layer, such a variation in thickness is hardly unlikely. 

In contrast to the high sensitivity to f^/f in an ac current-biased junction, in an ac 

voltage-biased junction, the only parameter that determines the step width is a = eV^^f^; 

the two parameters COp and P^, do not play any roles in determining the response of the 

Josephson junction, such as the appearance of cenain steps. Even for an ac current-biased 

junction, as long as the driving frequency is not too close to the plasma resonance 

frequency, the behavior of the junction will not be too sensitive to f, /f . In our case, from 
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EXPERIMENT 

1 mV (a) 

SIMULATION 

iac = 1-0 

n = l/2- 

(b) 

(c) 

Fig. 5.3 (a) I-V curves of the SNAP2 junction irradiated with 419 GHz radiation. The 

distinctive feature of the I-V curve with i3c=1.0 is the appearance of the 1/2 step with a litde 

bump on the left edge, (b) Simulated I-V curve with f, If =0.91 and i  =1.0. (c) The same 
L*   p ac ^  ^ 

as (b) except adding a 20K white Gaussian noise. Note tiie strong resemblence to the 

experimental curve, 1^0=1-0, in (a). 
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the estimated capacitance value, we know that the drive is near the resonance, so a small 

difference in f^/f can cause significantly different behavior. 

5.3        Analvsis of I-V characteristics. 

By using the analog simulator described in Chapter IV, we scanned f^/f and i , 

making I-V curves for comparison with experiment. At fjf = 0.97 and (3^. = 24 below the 

gap ( and 2.8 above the gap ) we found tiiat the I-V curves showed the 1/2 and the 2nd 

steps in the ac current range between i,^ = 0.85 to i,^ = 1.20. The simulated curve with 

i^=l.O is shown in Fig. 5.3b. As the dc current is increased from zero, the junction jumps 

out from the zero voltage step and phase locks to the 2/3 step for a short range of dc 

current, then for higher dc current the junction goes down to a lower voltage state on the 

1/2 step. The Poincare section map and the power spectrum show that there is no other 

phase-locking region in the transition range from tiie 2/3 to the 1/2 step; the system has 

gone through either chaotic or quasiperiodic states. 

5.3.1     The Importance of Added Noise 

The noticeable discrepancies between the simulation in Fig. 5.3b and the 

corresponding experimental curve for i^ = 1.0 in Fig. 5.3a, namely, an actual step at 

n=2/3 and hysteresis between the n=l/2 and n=2 steps, are typical for noise free 

simulations. We should expect these discrepancies to be removed by the addition of noise 

to the simulation. 

The littie piece of the 2/3 step is destroyed by a noise current equivalent to a white 

noise of 5K defined by Eq. (4.24), but die hysteresis takes much more noise to be 

removed. We found that we need to put 20K of noise into the simulation to barely 

suppress the hysteresis. If we add more tiian 20K of noise, the left comer of the 2nd step 

will become noisy, indicating that some noise-triggered down switching is happening. 

Then if we take a long enough averaging time, the noisy comer will be replaced by a 
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smooth rounded comer, which is not we saw in the experiment. (For example, the curve 

with i^g = 1.0 in Fig. 5.3a has a very sharp comer at the left edge of the 2nd step.) Thus 

we pick the simulated curve with 20K of noise to compare with the experimental ones. 

From the argument given in section 2.4, this 20K of noise is equivalent to 

20/3=6.7K of noise in the real experiment due to the large difference in the number of 

averaging cycles in the simulation and experiment. Keep in mind that we are working at 

far-infrared frequency range where both the photon energy hco and the induced step 

voltage level eV are comparable to the thermal energy kgT. We have to use the complete 

form of noise formula including both shot noise at finite voltage steps and the quantum 

fluctuationas at high frequencies. From ref. (46), the power spectmm of the current noise 

is 

S (V, CO, T) = — [ I^(V+fico/e) coth (x/2) + I^(V-1ico/e) codi (y/2) ] (5.2) 

^ eV+-hcQ _ eV --hco 

kgT     ,        ^""^ 

The integration of S(V, co, T) over the bandwidth (0, =«) gives the square of the noise 

current 

<5I^>   =  f S(V, co,T)dco 

For the piecewise nonlinear resistance model, if 

I V ±lico/e 1  < V 
g 

which is the case the current discussion addresses, then 

T   /A7J.*   / ^      V±1ico/e I   (V±1ico/e) =—  
^leak 

and (5.2) reduces to 

k   T 
S (V, CO, T) = —5 [ X coth d) + y coth (I) ] (5.3) 

27cR,  ^ ^ ^ leak 
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It is difficult to build an analog noise source which has such a complicated voltage and 

frequency dependence. What we can do is to replace this frequency and voltage dependent 

noise source by a white noise source with an effective noise temperature T^^, whose 

power density equals S(V^, (H^, T), where V^j^ is the average voltage at the part of the 

I-V curve concerned, and the fixed frequency value co^, is chosen to be that at which the 

noise affects the system most. Then 

T^ff= j[''oCo^h(^) + y^coth(^)] (5.4) 

This result will reduce to simpler forms in three limits: 

1) Thermal noise limit 

I XQ I « 1,   I y^ I « 1 

then Tgff = T " (5.4a) 

2) Shot noise limit. 
I 

then T,^ = T X [ x„ + y J /4 = eV^, / Ik^ (5.4b) 

3) Zero point fluctuation limit (blue noise). 

■ft®o>eVdc.    Ixj»l,   lyj»l 

then T^^ = Tx [ x„ - y J / 4 = -hco^2kB (5.4c) - 

To study the noise effect on the 1/2 step, it is reasonable to assume V^^ in (5.4) as 

the voltage at the 1/2 step. But the determination of the frequency co^ needs more 

investigation. Naturally, we would guess that the noise at the plasma resonance frequency 

cOp would affect the system most. If we replace co^ by co =27Cx400GHz in (5.4), we will 

have 

T^ff =-h(0p/2kBT - 9.6 K 
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This will correspond to T*=3Tgfp29K of noise in the simulation, which is higher than the 

value (T*«20K) we actually found to be neccessary in the simulation. That is 

unreasonable, because this T* should be the minimum noise in the experimental system. 

Any extraneous noise, such as the 300K room temperature blackbody radiation going 

through the window, can only make the actual noise in the system higher than this T*. 

Trying to solve this puzzle, we have investigated at what frequency the noise 

power affects the system most. We did this by replacing the white noise current by a 

sinusoidal current whose amplitude i'^ and frequency co could be varied. By increasing the 

amplitude of this ac current, we can decrease the hysteresis shown in Fig. 5.3b. We define 

a threshold value i"^, at which the hysteresis just disappears. In Fig. 5.4, we plot i"^ vs. the 

frequency co of that perturbing current. The result is rather surprising and interesting. 

Instead of at cOp, the threshold i"^ has its minimum value around co 73, and increases very 

sharply when co > cOp/2. This means the noise at the frequency around co/3 is most 

effective in removing the hysteresis, while the noise above co/2 has little effect. The curve 

in Fig. 5.4 is quite similar to the chaos threshold curve in Fig. 4.7, even though the 

thresholds are defined in quite different ways. The frequency for minimum i^^, of seeing 

chaos is about (2/3)cOp, while in this case the frequency corresponding to the minimum i"^ 

is (l/3)cOp. Notice we are studying the voltage at the 1/2 step, where the oscillation 

frequency is (l/2)fL = (l/2)fp; that might explain the factor-of-two difference. Whether this 

1/3 factor in both cases is purely a coincidence or has some general scaling nature behind it 

remains to be answered. 

Now if we assume C0g=(l/3)C0p in (5.4), for T=4.2K, we get tiie effective noise 

temperature 

T,fj = 5.5K 

which is only IK below the value   deduced from simulations. This is not bad at all 

considering all the simplifications we made in (5.4) to obtain this value. A small amount of 
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extraneous noise could account for the small remaining discrepancy. 
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Fig. 5.4 

Threshold of current amplitude of perturbation required to remove the hysteresis 

of the I-V curve in Fig. 5.3(b) as a function of frequency. 

The agreement between the data and the simulated I-V curve with the appropriate 

T* (Fig.5.3c) is impressively good. The phase lock of the littie piece of the 2/3 step is 

totally destroyed while leaving the 1/2 step almost unchanged. This littie piece of the 

destroyed 2/3 step forms the small bump at tiie left edge of the 1/2 step, resembling that 

seen in Uie experimental I-V curve. The fact that the simulated I-V curve is noisier than the 

experimental ones is another consequence of the fact that we average over relatively fewer 

cycles (10'^) in the simulations. By contrast, in the experiment, all except extremely 

low-frequency fluctuations are averaged out over 10^^ drive cycles. 

5.3.2    Determination of (O 

As we increase the frequency ratio f^/f from 0.97 in the simulation, the littie piece 
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of the 2/3 step in Fig. 5.3b becomes bigger and bigger while the lower 1/2 step becomes 

smaller and smaller. At the value ijf = 1.03, the 1/2 step is totally gone and replaced by 

either the 2/3 step or some noisy phase-unlocked motion. As we increase f, /f further, the 

2/3 step extends further and further to the right. Fig. 5.1b shows the simulated I-V curve 

with fL/fp=1.07, and iac=l-0- It has the distinctive feature of the 2/3 + 2nd steps, the 

"fingerprint" of the SNAPl junction. 

We have studied quantitatively in what parameter ranges those fingerprints might 

appear. First, we found that the appearance of these features are not too sensitive to p^. We 

can change p^ by 50% or more but keep the "fingerprint" unchanged. So we chose a P^ 

value of 3.4 and 28 by using R^ and Rj^^j^, respectively, which is close to the estimated 

experimental one. Then we scanned the two parameters f^/f^ and i^^, in a noiseless 

simulation. Since the unique feature of each junction is the successive appearance of 2/3 + 

2nd steps or 1/2 + 2nd steps, we focused on the regions in fi/fp-i^ plane, in which the 1/2 

or 2/3 plus 2nd step appears on the dc I-V curves. Taking advantage of the slowness of the 

simulator, we can monitor the time evolution of the phase <^, as we sweep the dc bias 

current. It is very easy to distinguish a phase-locked step from a phase-unlocked running 

state by monitoring the Poincare section of the <tH) map. Thus we define a step such that in 

a noticeable dc current range (the minimum resolution is roughly 1% of the critical current 

Ij,), the phase motion is periodic with the same period in the entire range. In Fig. 5.5, we 

plot a state diagram in fL/fp-iac plane. The horizontally shaded area is the region where we 

can see only the 2/3 + 2nd steps, the vertically shaded area is that for the 1/2 4- 2nd steps, 

while the doubly shaded area within the contour is that for the combination of the 

2/3+l/2+2nd steps, which is what we believe to be the fingerprint of the SNAP2 junction. 

Even with the loose criterion on step size stated above, this contour includes a narrow 

range in f^/fp, namely, 0.87 < f^/f <1.02 but a rather large range in i^, 0.8 < ig^ < 1-25. 

But we know in the experimental data, the maximum size of the 2/3 step for SNAPl and 



Fig. 5.5 Approximate state diagram in i^- ajai^ plane. The horizontally shaded area is 

the region where we can see the 2/3+2nd steps, the vertically shaded area is that for the 
l/2+2nd steps, the doubly shaded area is that for the 2/3+l/2+2nd steps, and the blank 
area is the region where we can see none of the above sequences of features seen in the 
experimental I-V curves. 
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the 1/2 step for SNAP2 is about 30% of I,,. By applying this more restrictive criterion plus 

other features of the I-V curves taken at other laser power levels, we can narrow down the 

range in i^^ substantially and determine the f^/fp ratio for SNAP2 to be 0.97±0.04. By 

contrast, for SNAPl, f./f =1.07±0.04. 
^ p 

To further verify the assumption drawn from the simulations that the qualitatively 

different behaviors of the two junctions are indeed caused by the difference in their critical 

current densities, we applied a magnetic field to reduce controllably the critical current 

density of SNAP2, which has been assumed to be higher than that of SNAPl. Fig. 5.6 

shows a series of I-V curves taken at the laser power level corresponding to i  =1.0. The 

measured critical current is decreased successively from the top to the bottom trace. 

Assuming the frequency ratio f^/fp = 0.97 for the curve on the top, we scaled the ratio for 

the other curves as f^/fp = [ 520 / I^(^A) y^x 0.97. As fL/fp increases from 0.97, we can 

see that the 1/2 step shrinks, and then totally disappears at f^/f =1.03. At I = 430|iA, 

corresponding to fL/fp=1.07, which is what we believe the ratio for SNAPl, the I-V curve 

has the fully extended 2/3 step right below the 2nd step, just like the I-V curve of SNAPl. 

In fact, all the quantitative features of this I-V curve such as the width of the Josephson 

steps are essentially the same as those of SNAPl. (See Fig. 5.1(a), the curve with i  =1.0 

and the inset for comparison.) Since the ratio fL/fp = 1-07 corresponds to I^. = 430 |iA, 

which is the same as SNAPl, we can conclude that the area difference between the two 

junctions is less than a few per cent, as might be expected from their similar fabrication. 

This experimental evidence definitely proves that a 10% difference in the plasma frequency 

is indeed the cause of the qualitatively different behaviors of the two similar junctions 

driven at the same FIR frequency. 

5.3.3     Calibration of i .  ac 

In order to calibrate the experimental i^^ accurately, we compared a set of I-V 

curves taken at different laser power levels ranging from 1 to 50 ( measured in an arbitrary 
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unit) with a set of simulated I-V curves taken at different i^^ scaled with the square root of 

the relative laser power levels. We determined the proportionality factor between i and the 

square root of the laser power by the best fit of all the I-V curves between the two sets. It 

turns out that if we choose the proportionality factor to make the absolute i^^, values those 

shown in Fig. 5.3a, then all the fits between the two sets of I-V curves are excellent in 

terms of the qualitative features of the I-V curves. For example, in Fig. 5.7(a), the 

experimental I-V curve is taken with the highest laser power level available from our laser 

source, which is 13.9 times higher than that of the one with i,^ = 1.0 in Fig. 5.3a: hence i 
3.C ^ ac 

is higher by (13.9)^^2^3.73. On the experimental I-V curve, the 1st Josephson step is 

again missing; also there is a negative resistance region at the left comer of the 2nd step. 

The simulated I-V curve with i^^ = 3.73, shown also in Fig.5.7, exhibits similar features. 

Without added noise ( Fig. 5.7b ), the state first phase locks onto the 2nd step; as we 

increase the dc current, it jumps down to the 1st step for a short range of the dc current and 

then comes back to the 2nd step. Again, we should expect that this sharp structure of phase 

locking will be removed by some noise. Fig. 5.7c shows a simulated I-V curve with a 40K 

white noise added on the same bias conditions as in Fig. 5.7b. The phase locking of the 

little piece of the 2nd and of the 1st step is destroyed by this noise; the resulting rounded 

comer (in Fig.5.7c )resembles the negative resistance region in die experimental I-V 

curve. The choice of 40K noise is somewhat arbitrary here, since there is no such a sharp 

criterion as in Fig. 5.3, where we chose the noise value such that the hysteresis just 

disappears, which is the case in the experiment. But for the bias conditions in Fig. 5.7, if 

we add more noise than 40K, even up to lOOK, the I-V curves just become more noisy; if 

we average for a longer time, the resulting smooth curve will have a more rounded comer, 

but nothing qualitative happens such as the disappearance of the hysteresis in Fig. 5.3. 

Thus it is hard to identify a specific noise value that best reprocuces the experimental 

result. But 40±10K seems to be the minimum noise we need to put in todestroy the phase 
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Fig. 5.7 

(a) Experimental I-V curve of the SNAP2 junction with a laser power 13.9 times higher 

than that of one with 1^^=1.0 in Fig. 5.3(a). (b) Simulated I-V curve with 0)^/03 =0.97 

^^^ ^ac=3-'73- (c) Same as (b) except adding 40K white Gaussian noise. 
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locking. This higher noise temperature ( compared to that in Fig. 5.3 ) is presumably due 

to the fact that we are operating at a much higher voltage state (2nd step instead of 1/2 step 

), so the shot noise is much bigger. We did not make any measurement like that of Fig. 5.4 

to identify the frequency cOp, at which noise affects the system most. The main reason is 

the umbiguity of defining the threshold i"^. For simiplicity, we just use the C0Q=0 limit of 

Eq. (5.4), which reduces to the shot noise limit (5.4b) for the voltage at the second step 

(XQ = yg = 5). Thus we have 

Teff = 10.3 K 

that gives T* ~ 30K, which is some 30% lower than our result. 

Besides the ambiguity in choosing T* discussed above, we have another difficulty 

to limit a rigorous comparison between the experiment and the simulation. In obtaining the 

noise calibration formula (4.24), we assumed that the resistance R is linear, and we have 

been using Rj^^ for R. This assumption is justified when we are considering the 1/2 step; 

its dc voltage is about 1/6 of the gap voltage, so the system at this step spends all the time 

below the gap. In contrast, at the 2nd step, the dc voltage is 2/3 of the gap, and due to the 

strong drive (i^^=3.7), the oscillation amplitude in V(t) is quite large, so the system spends 

quite a large portion ( 30-40% ) of its time above the gap. Thus we can not just use Rj^^ 

for R. Qualitatively, we should expect the effective resistance value R should be some kind 

of combination of Rj^^ and Rj^, and R^^ < R < Rj^^j^, so the equivalent noise temperature 

for given noise current is lower than predicted in (4.24) using Rj^^. 

Fig. 5.8 shows another way of determining the laser induced ac current i . The 

crosses show the measured zeroth step width of SNAPl vs. the square root of the laser 

power, while the circles are the zeroth step width in a simulation vs. the ac current with 

fL/fp = 1-07. By assuming the degree of reduction of the zeroth step width corresponds to 

the same i^^ in both experiment and simulation, we can thus determine the proponionality 

factor. We can see from Fig. 5.8 that the fit is.consistent over a wide range of i  . In fact, 
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this is the usual way of determining a^tYJfidi^ in all the previous studies,'^^''^^ where an 

ac voltage biased RCSJ model is assumed. But this method of fitting has its limitations for 

a current-biased RCSJ model in a highly nonlinear region. As discussed before, noiseless 

simulations will not reproduce the experimental results very well, and due to the 

complicated dependence of T^^jon V^^ and co^, in (5.4), the appropriate effective noise 

temperature T^^^ varies from part to part as we move along the I-V curve. The only partial 

exception is the zeroth step, where we can assume the shot noise to be small and at least 

roughly constant as we change the dc bias current, so we could put a fixed appropriate 

Tgff in the simulation to simulate the experiment. The optimal simulation of the steps at 

nonzero voltage would need a more complicated noise form. 

5.3.4    Experiments at 604 GHz and 245 GHz 

We have also smdied the response of the junctions to laser radiation at 604 and 

245 GHz, where the drive frequencies are not as close to the plasma resonance frequency 

as at 419 GHz. At 604 GHz, fj f^ = 1.5, chaos is very unlikely to happen (cf. Fig. 4.7). 

We did not see any chaotic behavior exhibited by any of the four SNAP junctions. But at 

this value of ij i^, the parameters of the junctions are close enough to the chaotic region 

that there are very serious deviations between the experimental results and the noiseless 

simulation. Fig. 5.9 shows step width data taken from another junction, SNAP3, by 

Danchi et al.^^ Jt has the parameters: 2A/e = 2.8 mV, I^ = 215 jiA, R^=7.2n. Its plasma 

frequency is fp = 390 ± 20 GHz. This value is obtained by the study of its reponse to 419 

GHz radiation, its fingerprint corresponds to fj fp=1.07±0.05. The crosses in Fig. 5.9 are 

the data taken at 1.4K, the dots are those at 4.2K. The circles are the simulated step width 

in a noiseless digital simulation^'^. The dashed lines are the step widths calculated from 

Bessel functions, which are derived for an ac voltage-biased junction. The agreement 

between the simulation and the data at 4.2K is reasonably good for the zeroth and the 2nd 

steps, but very poor for the 1st step. This indicates that noise and current-bias have more 
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Step width vs. i^^ (1^/1^ in the figure). The crosses are the data taken at 1.4K, the 

dots are the ones at 4.2K, the circles are the results from noiseless simulations. The dashed 
lines are the results calculated from Bessel functions. (After Ref. 67) 
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effect on some steps than on others. In this case, the noiseless simulation shows that the 

1st step is hysteretic, a region which is usually more sensitive to noise than the 

nonhysteretic one, because the noise-induced switching can significantly reduce the step 

size, while in the nonhysteretic case, the noise reduces the width only through rounding 

the comers, which is a much less profound effect 

At 245 GHz, f-J fp == 0.6, which should be the easiest region in which to see 

chaos. We did see chaotic behavior from the junctions we have studied ( SNAPl and 

SNAP2). In fact, it was the very reproducible noisy steps seen at 245 GHz from SNAPl 

that first made us suspect that we were studying a junction in a chaotic regime. But due to 

the off-resonance of the dipole antenna at this frequency (see Fig. 3.7), and the rich chaotic 

phenomena observed at 419 GHz, we did not devote much effort to studying the 

quantitative behavior of the junctions at 245 GHz, and no data are reproduced here. 
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5.4       Effect of noise in a fractal basin boundary regime. 

From the discussions in the previous section, we know that an intrinsically 

random noise source has very profound effects on a Josephson junction. It is essential to 

include an appropriate amount of noise in any simulational attempt to reproduce the 

experimental results. We also notice that noise has different effects on different parts of I-V 

curves. At certain parts, noise has very noticeable effects, such as washing out hysteresis 

and destroying an otherwise phase-locked step. At other parts, however, noise has little 

noticeable effect. This section addresses the effects of noise in a highly nonlinear but not 

intrinsically chaotic region (the basin boundary of attraction is fractal) compared to an 

intrinsically chaotic region. 

Fig. 5.10 shows a series of phase orbits taken in a noiseless simulation at 

fL/fp=l-07, i^j, = 1.50 and at different values of i^. It is suggested that the reader refer 

back to Fig. 5.1 to look at the experimental I-V curve with i^^ = 1.49. The system starts 

phase-locked on the zeroth step for small i^^, then becomes phase-unlocked as i^j^ 

increases to 1^0=0.14 (I^=425^lA), forming a noisy ramp. Fig. 5.10 a)-f) shows a series of 

successive simulated phase orbits taken as i^j^ increases. The bright spots in the pictures are 

the Poincare sections, n bright spots correspond to period n bifurcation. As i^^ increases, 

we can see that the system went into chaos through a period-doubling bifurcation 

sequence. At i^ = 0.15, the Poincare section exhibits a strange attractor. Even in the 

absence of noise, the motion of the system is random. 

The I-V curve in Fig.5.1 with i^ = 1.0 shows a similarly noisy ramp as that of 

the one with i = 1.5, but the noiseless simulated I-V curve with i =1.0 shown in the 

inset does not show any chaotic behavior in the region between the zeroth and the 2/3 

steps. Instead, the I-V curve is hysteretic in that region. This indicates that the system is 

bistable in the dc bias range 0.13 < i^^ < 0.18. The state in which the system will end 

depends on the initial conditions, specifically in which basin of attraction the system 
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Started. Fig. 5.11 shows digitally computed basins of attraction. Under the bias conditions 

^ac = 1-0' ^dc =" 0-15' ^here are two attractors: the zeroth step and the 2/3 step, or one 

solution with a period of one drive cycle, the other one with a period of 3 drive cycles. 

Fig. 5.11 divides the phase space region [-II<(^<K, -K<<^<K] into a 

200x200 grid. The RCSJ equation ( with !„ = 0 ) was solved for each initial condition on 

the grid and, after an initial transient, the system converges on one of the two 

phase-locked solutions. If the system converged on the first, corresponding to a 

zeroth-step solution (V^=0), a black square was plotted; if the system converged on the 

second, corresponding to V^^ = (2/3) (hfL/2e), the 2/3 step, a white square was plotted. 

Thus, the black and white regions in Fig. 5.11 compose the two basins of attraction. The 

basin boundary has a very complicated fractal structure, indicating the high sensitivity of 

the system to the exact initial conditions. It is intuitively plausible that this high sensitivity 

to tile initial conditions corresponds to a high sensitivity to noise when noise is added in 

the simulation, because noise can be treated in some aspects as a certain amount of 

uncertainty in the initial conditions. 
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Fig. 5.11 Basins of attraction for i^=1.0 and idc=0.15. The white region is the basin of 

the 2/3 step solution, corresponding to the three-point Poincard section indicated by the 

centers of the black circles. The black region is the basin of the zeroth-step solution, with 

one-point Poincare section (white circle). No noise is included. 
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Grebogi et al."° derived a formula relating the noise sensitivity to the fractal 

structure of the basin boundaries. Consider the simple two-dimensional phase space 

diagram, schematically depicted in Fig. 5.12. There are two possible final states 

("attractors") denoted A and B. Initial conditions on one side of the boundary, Z, 

eventually asymptote to B, while those on the other side of E eventually go to A. The 

region to the left (right) of Z is the " basin of attraction" for attractor A (or B) and L is the 

"basin boundary". 

Fig. 5.12 

A region of phase space divided by the basin boundary 2 into basins of attraction 

for the two attractors A and B. 1 and 2 represent two initial conditions with uncertainty e. 

If the initial conditions are uncertain by an amount e, then, ( cf. Fig. 5.12 ) for 

those initial conditions within e of the boundary, we can not say a priori to which attractor 

the orbit eventually tends. For example, in Fig. 5.12, 1 and 2 represent two initial 

conditions with an uncertainty e. The orbit generated by initial condition 1 is attracted to 

attractor B. Initial condition 2, however, is uncertain in the sense that the orbit generated 

by 2 maybe attracted either to A or B. In particular, consider the fraction / of the volume 

of the uncertain phase space over the whole phase space. For the case shown in Fig. 5.12, 
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we clearly have /~e. However, if the basin boundary is fractal, the scaling can be quite 

different. 

It is very useful to introduce the concept of dimension of a fractal dimension d. ^^ 

It can be defined equivalentiy in several ways. Grebogi et al. used the capacity definition of 

dimension: 

d =   hm  ^— (5.5) 
5^0 In (1/5) 

where N(5) is the minimum number of D dimensional cubes of side 5 needed to cover the 

basin boundary. In a extreme case, where the boundary is a smooth curve, then 

N(5) ~ 5D-1 (5.6) 

thus 

^ = D-1 (5.7) 

But in general, d > D-1. The larger d is, the larger fraction of the space is 

occupied by boundaries, and the more complicated the fractal structure is. Quantitatively, 

the total number of cubes of side 5 in the whole space is 

N^t~5-^ (5.8) 

Combining with (5.5), we have the fraction of the space composed by boundaries given by 

N„,(5) 

If we choose the side of the cube 5 being the uncertainty in the initial conditions 

e, then 

/ ~ e°-d (5.10) 

What (5.10) indicates is that the fraction of the uncertain region in phase space is scaled to 

the initial uncenainty e through a power law. In the case rf = D, in which the whole 

phase space is occupied by boundaries, / can be a finite value no matter how small the 

uncertainty in the initial conditions is. Clearly, a high fraction/ corresponds to high noise 
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sensitivity; thus the noise sensitivity is related to the dimension of the basin boundary d in 

such a way that higher d causes higher noise sensitivity. This conclusion is strongly 

supported by the experimental data shown in Fig. 5.13. 

Fig. 5.13(d) is the dimension of the basin boundary (from digital simulations) vs. 

dc bias current. Its peak takes place at i^^ = 0.16, and the peak value is quite close to 2. 

The curve in Fig.5.13(e) is the noise output from SNAPl measured on a PAR124 lock-in 

amplifier in the ac voltmeter mode at 10 kHz with a 10% bandwidth. From Fig. 5.13 (d) 

and (e), it is clear that the variation in the experimental noise output in the region studied 

corresponds qualitatively to the variation of the calculated fractal basin boundary dimension 

with ijjj,, as expected on the basis of the above argument, given thermal and shot noise (or 

extraneous noise) inputs in the experimental system. No values of d are shown in Fig. 

5.13(d) for ijp > 0.3, since no sensitive dependence on initial conditions (i.e. no fractal 

basin boundary) was observed in the simulations. The two other noise peaks displayed in 

Fig. 5.13(e) (at i^~0A5 and ~0.62 ) are associated either with intrinsic chaos or noise 

amplification due to high dynamic resistance of the I-V curve. 

Our basin-boundary study thus provides a mechanism to explain the high 

experimental noise values in the non-intrinsically chaotic regions. To obtain the 

phase-space motion of the system and a measure of the concomitant noise, we reverted to 

digital simulations. Noise was first introduced in the calculations as a white Johnson noise 

source. Every simulation was begun with the system at a very high noise temperature 

(T~1000K) and then gradually "annealed" until the desired temperature range was reached; 

this annealing process is added to make the simulation results independent of the initial 

conditions chosen. After we waited for some additional cycles to discard initial transients, 

the Poincare section and the power spectrum of the solution were calculated over at least 

3200 cycles, with a time step of one-thousandth of a drive cycle. 
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The Poincare section of Fig. 5.14(a) shows the behavior in a fractal basin 

boundary regime. If only a small amount of noise (T=1K) is added to the system, the 

motion is still essentially periodic and qualitatively similar to the case with no added noise, 

depicted in Fig.5.11 by black circles; the orbit is still well within the basin of attraction of 

the 2/3 step. If we add more noise, the nature of the orbit becomes very different, as 

shown in Fig. 5.14(b). The resulting Poincare section is stretched out anisotropically, 

reproducibly filling in a complicated region of phase space. It is very similar to the 

Poincare section for an intrinsically chaotic regime, displayed in Fig. 5.14(c) and (d), 

which shows an extended strange attractor even in the absence of noise (Fig. 5.14(c)). 

Adding 50K of noise does not change the Poincare section qualitatively in this case. One 

may conclude that noise does not have profound effects on intrinsic chaos. Also, from the 

similarity between Fig. 5.14 (b) and (d), we may draw a conclusion that it is difficult if not 

impossible to distinguish noise-induced chaos from intrinsic chaos in an experiment. In 

general, we found a great similarity in all the Poincare sections calculated for 

experimentally noisy regimes (both intrinsically and non-intrinsically chaotic regions ) as 

long as the effect of noise (T>5K) was included, providing a plausible explanation for the 

comparable noise values observed experimentally in all the noisy regions. 
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Effect of added noise on the Poincare sections for the system: 

(a), (b) in fractal basin boundary regime at i^=0.18 and i^=1.0, and (c), (d) in an 
intrinsic" chaotic regime at i^=0.15 and i =1.5. 
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5.5        Power spectrum of noise-induced intermittencv. 

The power spectrum of the solutions in the firactal basin boundary regime show 

noise-induced intermittency leading to large low-frequency noise. This is shown in 

Fig.5.15, where the spectrum is approximately 1/f for at least two frequency decades 

over a wide noise temperature range. (The peak at fj 3 reflects the residual effect of the 

period-three phase lock.) Such behavior is not uncommon in the parameter region 

investigated here. The occurrence of switching and excess low frequency noise has a rather 

well-defined threshold noise temperature for a simulation of given length. The Poincare 

section for 5K is still localized within the basin of attraction of the 2/3 step solution but 

comes very close to the boundary. A small increase in the added noise pushed the orbit out 

into the basin boundary. This causes sudden changes in the Poincare section as shown in 

Fig. 5.14(b), which begins to resemble a strange attractor. And correspondingly, the 

power spectrum of the solution develops excess low-frequency noise. The situation is 

qualitatively similar to an interior crisis^^ occuring in intrinsic chaotic systems, in the 

neighborhood of which an intrinsic approximately 1/f power spectrum was found"^^. 

If shot noise is included in the calculations, similar results are obtained. However, 

the 1/f power spectrum now holds down to T=0, since the magnitude of the added noise 

bottoms out at a finite value, corresponding to a Johnson noise temperature of the order of 

5K at the 2/3 step. So experimentally, it will not make much difference if we cool down 

from 4.2K to 1.4K; the noise-induced chaos will occur at both temperatures. In fact, the 

experimental data taken at 4.2K and 1.4K are quite similar in terms of noisy I-V curves 

and noise power density. 

However, the power spectra measured from our analog simulations under similar 

bias conditions as that of the digital simulations are in general Lorentzian. One of them is 

shown in Fig. 5.16. The junction is biased at i^ = 0.17, i^^ = 1.0, and ijf = 1.07. The 

amplitude of the noise current corresponds to 50K thermal noise for the SNAPl junction. 



f/f. 

Fig. 5.15 Effect of added noise on the power spectra calculated from the digital 

simulations. Parameters are i^^.=0.18 and i  =1.0. 
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Fig. 5.16 
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Measured power spectrum from the analog simulation. The junction is biased at 

i^=0.17, iac=1.0, and fJi^^l.Qil. The noise level corresponds to 50K thermal noise for 

the SNAPl junction. The marked S(0) and fj^g are defined as: S(0) = S(f=0), and 

S(f3dB)=S(0)/2. 
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From Fig. 5.16, we can see that the spectrum flattens out at the low frequency end 

(<10Hz), rolls off as l/f in the intermediate frequency range (10Hz<f<lkHz), and rises 

again at high frequency, where it has peaks at f^.J3 and f^^^^ and its harmonics. If we 

increase the amplitude of the noise current while keeping the other bias conditions 

unchanged, the onset frequency of the rolling-off (marked f3^ in Fig. 5.16) will increase, 

while the spectral density at zero frequency [marked S(0) in Fig. 5.16] will in general 

decrease. 

Machlup derived a formula for the power spectrum of a random telegraph 

signal: 

S(f) = 4V,'^—E^^ ^- (5.11) 
(Xo + Xp    l+47t¥x2 

where S(f) is the mean-square voltage fluctuation per unit frequency, and V^^ is the 

voltage of the "on" state 1 (the voltage of the "off state 0 is assumed to be zero), XQ and 

Tj are the mean lifetimes of the state 0 and 1 respectively, and 

111 
- = — + — (5.12) 
X       t X 

0 1 

Although it was derived in the assumption that both 0 and / are only dc states, 

(5.11) is cenainly applicable to the power spectrum associated with a random switching 

between two ac Josephson steps as long as the frequency range concerned is far below the 

drive frequency. From Fig. 5.16 we can see that at the frequency region close to the drive, 

the spectrum is "skirted" by the 1/3 subharmonic of the drive frequency, and the resulting 

spectrum is substantially enhanced above the Lorentzian one. 

Since the noise-induced switching between the two states is triggered by a noise 

current with a Gaussian distribution, we should expect the lifetimes Xg and Xj to take the 

form: 
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AEQ/kT 
X   = X   e 

AEi/kT (5.13) 
X   = X   e 
I 10 

where AE is the energy barrier which has to be overcome for the system to switch from 

one attractor to another, so AE determines the global stability'^^ of the attractor concerned 

under finite perturbation. From the measured Lorentzian power spectrum at different noise 

levels, we should be able to measure the energy barriers AEQ and AEj as well as the 

prefactors XQQ and X^Q. 

For a Lorentzian spectrum, two quantities: S(0) and fj^g contain all the 

information of the spectrum, where S(0) is the spectral density at the zero frequency and 

f3dB=l/27CX is the 3dB frequency at which SCfj^g) = S(0)/2. Combining (5.11) and 

(5.12), we get relations between XQ and x^ and the measured quantities S(0) and fj^: 

X     = ^—^ [l±7l-4C] 
^      ^'^fscfflC (5.14) 

where 

*      4;tf3^C 
y 

C = 7^'^^^f      = 2   ^    '3dB 
<5vS 

(5.15) 

The second equation in (5.15) comes from the fact: For a Lorentzian spectrum (5.11), the 

mean-square voltage fluctuation is given by: 

<5VS = Js(f)df = V^^|.S(0)f3^ (5.16) 
0 

For a random telegraph signal which spends fraction / of time on state 1 and (1 -/) of 

time on state 0 , we have a simple result: 
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<5V^> 
C =  -— = f(l-f) (5.17) 

1 

In this case, / =1/2, the system spends equal time on both states, so 'CQ = x^. For some 

power spectra taken at high levels of noise current, the calculated value of C from (5.15) is 

larger than 1/4, which makes Eq. (5.14) meaningless. This result comes from the fact that 

at high noise levels, fj^jg is so high that the onset of the roUing-off frequency is not far 

enough below the driving frequency and its subharmonics (cf. Fig. 5.16), to allow a clean 

separation of the Lorentzian; thus all the predictions above failed in this case. 

Fig. 5.17 shows the normalized mean-square fluctuation <SV^>/Y^^ deduced 

from the measured quantities S(0) and fj^g through (5.15) vs. 1/T, where T is the 

effective noise temperature for the SNAPl junction converted from the noise current in the 

simulation through Eq. (4.24). In the range of low noise levels 10<T<50K 

(0.02<1/T<0.1K'^), the amplitude of the fluctuating voltage goes to zero, indicating that 

the system spends most of its time in one attractor. On the other hand, at higher noise 

levels 50<T<200K (0.005<l/T<0.02K-i), the normalized mean-square fluctuation 

appoaches the theoretical maximum value, 0.25. This indicates that when strong noise 

triggered the system to switch back and forth between the two attractors frequentiy, the 

system spends rather even relative duty cycles on the two attractors. At very high noise 

levels, T>200K (1/T<0.005K"^), the normalized mean-square fluctuation exceeds 0.25, 

indicating serious deviations of the power spectra from an ideal Lorentzian one occur due 

to the proximity of fg^ to the subharmonic of the drive frequency [i2dB^^-^^^^diwe/^^^- 

The lifetimes XQ and Tj deduced from the measured S(0) and fj^ through (5.14) 

as functions of noise level   1/T  are shown in Fig. 5.18, in which the dc and ac bias 
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Fig. 5.17 Normalized mean-square fluctuation deduced from the measured quantities S(0) 

and fjjg through (5.15) vs. the noise level. The dc and ac bias conditions are the same as 
those in Fig. 5.16. 
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conditions are the same as that in Fig. 5.16. All the data shown were taken from the power 

spectra with fj^g < 0-0lif^^J3). This criterion guarantees that the low-frequency power 

spectra have at least one frequency decade of well-defined 1/f^ rolling-off; thus all the 

values of C calculated from (5.15) are smaller than 0.25. 

The data in Fig. 5.18 showed an apparent linear dependence of logx^ on lA", 

especially at the small noise current end. There are some deviations between the data and 

the linear line at the high noise current end 1/T<0.02, which arise from the fact that the 

prefactors XQQ and x^g in Eq. (5.13) can be only assumed constants in the low noise limit 

AE/kT » 1. When the noise level is comparable to the energy barrier, due to the frequent 

switching, XQQ and XJQ, which equal to the inverse product of the populations at the bottom 

of the potential wells times the attempt frequencies, will be functions of the noise level; 

thus (logx) will not vary linearly with (1/T) anymore. This is evidenced by the fact that in 

Fig. 5.18, the data of x^, which corresponds to a higher energy barrier (steeper slope of 

logx^ vs. 1/T than that of x_), deviates from the straight line at a higher noise level than that 

of X. 

The two sets of data in Fig. 5.18 are x^ and x_ calculated from (5.14), they 

correspond to the lifetimes XQ and x^ of the two states, the 0th step and the 2/3 step. But 

from the measurement of power spectrum alone, we are not able to tell whether x or x 

corresponds to XQ, since if we reverse XQ and x^ the resulting power spectrum will be the 

same. However, by monitoring the time dependent voltage with an oscilloscope, we know 

that the system spends more time on the 0th step, thus we know that x^ (larger one) 

corresponds to Xg, while x corresponds to x^. 

From the straight line which fits the data at the low noise end, we can calculate 

the energy barrier AE defined in (5.13): 

AEg/kg = 143K,    AE^/kg = 43K 

As a comparison, the Josephson coupling energy (the energy barrier in a dc case) for the 
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Logarithmic plot of lifetimes deduced from the measured S(0) and fj^ through 

(5.14) as functions of the noise temperature. 
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SNAPl junction is IC^K. The prefactors XQQ and X^Q in (5.13) are: 

TQQ = 1.5 msec,    X^Q = 9.0 msec. 

The power spectra measured at other dc bias points than the one of Fig. 5.18 also 

showed the Lorentzian form. The corresponding lifetimes also have a clear exponential 

dependence on 1/T in the form of Eq. (5.13). 

All these Lorentzian power spectra imply that the noise-induced intermittency 

between the 0th and 2/3 steps is a hopping process, in which the switching time is much 

shorter than the lifetimes TQ and x^ of the two states. The hopping process is very well 

characterized by a thermal activation model, based on the existence of an energy barrier 

between two stable states. Due to the bombardment of noise, the system occasionally hops 

over the barrier and gives rise to the fluctuating voltage of a random telegraph signal. This 

is not consistent with the 1/f power spectrum calculated fix)m the digital simulation. The 1/f 

spectrum suggests that there is a long-lived intermediate state between the two states, 0th 

and 2/3 step. This intermediate state is perhaps a transient-chaotic state^^. On the other 

hand, it may be relevant that the 1/f dependence was found in a frequency range closer to 

^drive ^^^^ *^^ found reliable in the analog data. 

5.6        Concluding remarks 

In conclusion, we found that a Josephson junction exhibits rich chaotic 

phenomena when it is driven at or below its plasma resonance frequency. At this 

frequency, the qualitative features on I-V curves can be so sensitive to the drive/plasma 

frequency ratio f^/ fp, that a few per cent change in fj f is enough to produce a clearly 

recognizable difference on I-V curves. This extreme sensitivity provides us a way of 

determining the experimental parameters fj f and i^^ much more accurately than 

estimates based on a very uncertain capacitance value. With the best chosen parameters and 

an appropriate amount of noise, we can reproduce the experimental results beautifully both 

in the qualitative features of the I-V curves such as the appearance of certain subharmonic 
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Steps, and the quantitative features such as the width of the zeroth step. Aided by 

simulations, we found at certain noisy parts of I-V curves, the basin boundary has a very 

complicated fractal structure; its dimension d is closely related to the noise sensitivity, 

maximum d corresponds to a maximum noise power density measured in the experiment. 

The power spectra associated with the noise-induced switching are in general Lorentzian, 

with the lifetimes on each state being well characterized by a thermal activation model. The 

simulation also showed that noise-induced chaos is practically undistinguishable from 

intrinsic chaos in terms of the phase orbit 



CHAPTER VI 

CONCLUSIONS 

6.1        Summary and conclusions 

We have demonstrated in experiments that a Josephson junction exhibits rich 

chaotic phenomena when it is driven at or below its plasma resonance frequency. This 

experiment is the first of its kind in the far-infrared frequency range, where the radiation 

frequency is close to the superconducting gap frequency, and it shows some unique 

features at this frequency range. 

a) In addition to the nonlinear Josephson current-phase relation, there is an extra 

nonlinearity associated with the gap structure of the quasiparticle I-V characteristic. The 

effect of this nonlinearity becomes important in the far-infrared frequency range, where 

the ac Josephson steps are close to the gap voltage. 

b) The levels of shot noise associated with the finite voltage steps and the zero point 

fluctuations at this frequency range are comparable to or larger than the thermal noise of the 

ambient temperature. This non-thermal noise needs to be to be taken into account when we 

study the effect of noise on a driven Josephson junction in a highly nonlinear regime. 

We have studied the above features by a combination of experimental and 

simulational work. 

a) In our simularions, we approximate the complicated nonlinear structure of the 

quasiparticle I-V characteristic by a piecewise nonlinear resistance, which turns out to 

work surprisingly well. By choosing the right values of other parameters (f^/f , for 

example) in our simulations, we could reproduce the experimental results very well both in 

those qualitative features such as the appearance of certain subharmonic steps, and the 

quantitative features such as the variation of the step width vs. laser power. The good 
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agreement between the simulations based on such a simple nonlinear resistance and the 

experimental results from a much more complicated nonlinear resistance indicates that if the 

radiation frequency is comparable to the gap frequency, the spacing between the ac 

Josephson steps is so large compared to the nonlinear region at the gap that the detailed 

nonlinear structure at the gap is not important as long as the piecewise resistance resembles 

the quasiparticle I-V characteristic far away from the gap. 

b) In the noiseless simulations, we often found that the simulated I-V curve shows 

hysteresis which can be removed by adding some noise in the simulations. We found that 

it is necessary to insert a noise current with an effective noise temperature higher than that 

of the ambient temperature in the experiment even after taking into account the large 

disparity of the number of averaging cycles between the experiment and the simulation. 

This higher noise level can be largely accounted for by the shot noise associated with the 

high voltage level of the ac Josephson steps at far-infrared frequencies and the zero point 

fluctuations at the same frequency range if we use a complete noise power spectrum 

including the shot noise and the quantum fluctuations. 

One of our main discoveries is that when the radiation frequency f^ is close to the 

Josephson plasma resonance frequency f , the response of tiie junction to the radiation is 

so sensitive to the drive/plasma frequency ratio f^/fp that a 10% change in ijf , say, from 

V^p"^-^^ ^° ^L/^P^I-O'^' will make the I-V curves of the irradiated junction qualitatively 

different from each other. For example, one shows die 2/3 step (f^/f =0.97), and the other 

shows the 1/2 step (fL/fp=1.07). These qualitative features of die I-V curves can serve as a 

"fingerprint" for each junction since certain features only appear for a very narrow 

parameter range. By reproducing these fingerprints in simulations, we can determine the 

parameters (especially fp) of the junctions to a higher precision than the estimates based on 

some precision-limited parameters such as the capacitance. A precise determination of the 

experimental parameters is very crucial for our studies of nonlinear dynamic effects 
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exhibited by the junctions; since at this high frequency (200-600GHZ), we cannot measure 

directly the phase motion, all we can measure is some long-time averaged quantities such 

as the dc I-V curves and low frequency power spectrum. The only way we can understand 

those observed chaotic phenomena is to study die phase motion of the system in a much 

slower simulation. The qualitity of such studies apparentiy depends heavily on how 

precisely we can model the real Josephson junction system in our simulations. 

Aided by simulations, we found tiiat apparentiy similar noisy I-V curves can be 

due to quite different mechanisms. Some of them are due to intrinsic chaos; the simulation 

showed tiiat the phase motion of the system is chaotic even in the absence of noise. But 

some of them are due to the noise-induced intermittent switching between several 

co-existent attractors. For example, under the particular bias conditions: fj/f =1.07, 

i^j.=1.0, the I-V curve has a hysteretic loop between the 0th and 2/3 steps; the digital 

simulation studies reveal tiiat in tiiat loop tiie basin boundary of attraction is fractal. The 

dimension d of tiiis fractal boundary varies witii die dc bias current, and d is close to 2 at 

a certain range of dc bias current, meaning tiiat much of the phase space is composed of the 

basin boundary. Any random noise input makes the system wander between the two 

attractors, giving rise to a high noise output. The coincidence of tiie maximum d and the 

peak of the measured noise density has been observed. 

The studies of the power spectrum at die above bias conditions reveal a different 

story: The power spectra witii noise-triggered switching are in general Lorentzian, 

meaning the switching is a hopping process; tiie system randomly hopps from one state to 

another with mean lifetims TQ and Xj on each state. The linear dependence of logx on 1/T 

indicates that there is an energy barrier separating the two bistable states. The system has 

to hop over this energy barrier to switch from one state to another. The energy barriers 

AEQ and AEp measured from the state 0 and 7 respectively, determine the lifetimes of the 

system at 0 and 1 under finite perturbations. These energy barriers are functions of the 
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bias conditions. It is possible that it is the variation of the energy barriers with the dc bias 

current, rather than the variation of the fractal dimension, that is responsible for the peak 

of the measured noise density in the experiment. 

j ■' 

6.2        Future work 

It would be incomplete to end this report without mentioning potential future 

work in related fields: 

The study of Josephson junction arrays has been very active in the past few years 

because of their potential applications. However, despite the large amount of work done 

in this field'■^, many questions remain to be answered. For example, an array with N 

identical junctions spaced much closer than the radiation wavelengths should be equivalent 

to a single junction whose plasma frequency co and McCumber parameter P^ are the same 

as those of a single junction in the array; thus this junction array should behave the same 

way as that of the single junction except the voltage scale is N times bigger. Particularly, if 

the parameters of a single junction in the array are in a chaotic regime, we should expect 

the whole array to behave chaotically in the same way. In trying to verify these 

speculations in experiments, we can gain some futher understanding of the nature of a 

driven nonlinear system. 

Our studies of the chaotic behaviors of Josephson junctions driven at far-infrared 

frequencies have been liiiiited to a few frequencies. This is mainly because the radiation 

source (optically-pumped-laser) is not a continously tunable source, and our antenna is a 

narrow-band resonance device. 

The bow-tie antenna''* is a broadband coupling antenna. Its impedance is purely 

resistive and independent of frequency. Also, its coupling efficiency is supposed to be 

6dB'^ better than that of a dipole antenna at resonance. It has been reported*^^ that a 

bow-tie antenna was used to couple a SIS mixer to far-infrared radiation at 116-466 GHz. 
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However, no direct comparison has been made between the performance of the bow-tie 

antenna with other types of antenna at such high frequencies. Our own experience with the 

bow-tie antenna seems to show that it is not as efficient in coupling radiation as a 

half-wave dipole antenna at its resonant frequency. For example, the I-V curve we 

measured from a Sn-Pb junction attached to a bow-tie antenna irradiated by 604 GHz 

radiation exhibited up to the 6th ac Josephson step, while similar junctions attached to a 

dipole antenna in ref. 49 showed up to 7th step. We can not say for sure from this result 

that the bow-tie antenna is less efficient than the dipole antenna because there are other 

factors determining the coupling as well. One of the reasons for this lesser coupling might 

be a larger capacitive shunting of a bigger cross sectional area of our junctions compared 

to that of ref. 49. Although these junctions were fabricated in a similar process, the areas 

can differ from junction to junction by a factor of five (cf. Table 4.2 in ref. 49). 

The log-periodic antenna'" is a broadband coupling antenna like the bow-tie 

antenna but has its main radiation lobe perpendicular to its plane. In contrast, the main lobe 

of the bow-tie antenna is about 30 degrees from the normal of the antenna plane which 

makes an optimized coupling difficult. It has been suggested^'^ that the log-periodic 

antenna is a better candidate for far-infrared coupling than the bow-tie antenna. 

A tunable local oscillator would be an ideal radiation source to study Josephson 

effects. Among the many candidates based on Josephson oscillation, two seem to be 

particularly promising. 

a) Josephson junction arrays. Compared to a single junction, Josephson junction arrays 

have advantages: i) larger dynamic range and thus larger radiation power; ii) higher 

impedance, thus a better impedance match to free space; iii) more coherent radiation, i.e. 

narrower linewidth of radiation. However, in order to obtain a coherent radiation, the 

dimension of the array has to be a small fraction of the wavelength. This puts a serious 

limitation on the number of junctions, especially at far-infrared frequencies, where the 



161 

wavelength is less than a few millimeters. One way to solve this problem is to place the 

junctions in the array one wavelength from each other^^. However, this arrangement will 

seriously limit the tunability of the radiation frequency, making the junction array at best a 

multi-frequency generator instead of a continuously tunable oscillator. 

b)   Flux-flow oscillator.   By applying a magnetic field on a long one-dimensional 

dc-biased Josephson junction, the inverse Lorentz force exerted on the fluxes will force 

them to flow to one direction. The influence of this flux flow on an adjacent junction is like 

a radiation field, thus inducing a set of ac Josephson steps as well as the 

photon-assisted-tunneling steps on the I-V curves of the adjacent junction. It has been 

reported'" that the coupled power of such flux flow can be as large as IfiW over the 

frequency range of 100-400GHz. 

In summary, we have observed chaotic behaviors of single Josephson junctions 

driven at far-infrared frequencies. Our experimental data agree well with the results of the 

simulation based on the RCSJ model and modified to include the nonlinearity of the 

quasiparticle I-V characteristic and the quantum noise. Much work remains to be done to 

extend this work to a broader frequency range and multi-junction arrays. 
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